Discovery of subfossil wood opens new research avenues

May 30, 2013
The wood samples are carefully inventoried and prepared for analysis in the laboratory. Credit: WSL / Gottardo Pestalozzi

A Sunday walk led to the discovery of a subfossil forest which has remained intact for over 13,000 years in the Zurich clay, opening new doors for Central European dendrochronology.

The fact that many finds have happened by chance was demonstrated again recently in Zurich. Daniel Nievergelt, a dendrochronologist at the Swiss Federal Institute for Forest, Snow and WSL, was just having a look at a building site on the southern edge of the city. He knew there was some justification for hope of a spectacular discovery from his collaboration with his colleague Felix Kaiser, who died in 2012 and who in 1999 had already found subfossil wood during the excavation of the Uetliberg Highway Tunnel.

The researcher took a closer examination of a few tree stumps on the edge of the loamy building pit in the neighborhood of Zurich Binz that had been discarded by the as waste timber. He found they were , and immediately investigated them further with colleagues from the WSL. He also sent three samples to the Swiss Federal Institute of Technology (ETH), where they were C14-dated. This confirmed his suspicions: the timber was discovered to go back to between 12,846 BP and 13,782 BP. With the support of the building-site management, to date the WSL researchers have managed to salvage some 200 pine-tree stumps, which they have had transported in truckloads to the WSL. To the knowledge of the researchers involved, the quality and scale of the find are unique worldwide.

What the find could mean for science

WSL runs one of the leading laboratories for tree-ring research (dendrochronology) worldwide, making a significant contribution to research work in a wide range of disciplines. The most recent finds are being incorporated into a of environmental archives and may provide important information about a number of research questions: What was the climate like after the ? What events left a mark on the area around Zurich and the Earth in general? What is the genetic relationship between the Zurich Binz pines and their cognates today? In addition, the prehistoric wood in Zurich Binz could help in the calibration of the C14 curve.

The tree rings and condition and location of the discovered stumps allow conclusions to be drawn about past fluctuations in temperature and precipitation and attest to disturbances such as fires, storms and earthquakes. The density and chemical composition of the wood may provide clues to the climate and air composition in the past. And since relatively recently, aDNA analysis allow trees' evolution to be traced.

All the data produced to be published

The WSL researchers are now sawing three sections from each useable stump and are analyzing the wood and the rings in their own laboratories and in those of their partners. The scientists will first try to add to the Central European dendrochronology chart (see image). This dataset contains dated tree rings going back to 12594 BP. The finds that have been made up to now in Zurich are from the period from 12700 BP to 14100 BP. Through meticulous comparison of tree-ring patterns, efforts are now being made to identify the overlaps needed for precise dating. Perhaps the new-found timbers can fill a gap and extend the chronology by around 2,000 years. Whatever the case may be, the timbers discovered in Zurich Binz and the data arising from their analysis are of invaluable scientific importance. In the tradition of open scientific exchange, the WSL will gradually make such data public, for instance through the International Tree-Ring Data Bank (ITRDB), which for decades now has been supplied with a wealth of data by the WSL's tree-ring laboratory and its founder, Fritz Schweingruber.

Explore further: Tropical depression 21W forms, Philippines under warnings

More information: www.ncdc.noaa.gov/paleo/treering.html

Provided by Swiss Federal Institute for Forest, Snow and Landscape Research

5 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Tree-ring science takes on the modern age

Feb 24, 2012

Whether it's learning how forests respond to environmental change or answering questions about the history of ancient cultures, trees continue to be a solid source of information for many kinds of researchers.

Rings reveal extensive yearly climate record

Apr 18, 2011

A new study of the oldest trees in Mexico provides the first ever detailed, year-by-year look at the climate of Mesoamerica over a thousand-year span. The data, gathered from the annual growth rings in trees, ...

Tree-ring data show history, pattern to droughts

Feb 18, 2013

Dendrochronologists have shown that tree-ring data produce a remarkably accurate history of droughts and other climate changes. Combined with reliable drought indices and historical descriptions of climate conditions, dendrochronology ...

Recommended for you

Questions of continental crust

16 hours ago

Geological processes shape the planet Earth and are in many ways essential to our planet's habitability for life. One important geological process is plate tectonics – the drifting, colliding and general ...

Better forecasts for sea ice under climate change

Nov 25, 2014

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.