A new dimension for 3-D protein structures

May 13, 2013 by Nik Papageorgiou
The 3D structure of cytochrome C. Credit: adapted from Wikimedia Commons

(Phys.org) —3D structures of biological molecules like proteins directly affect the way they behave in our bodies. EPFL scientists have developed a new infrared-UV laser method to more accurately determine the structure of proteins containing thousands of atoms.

Biological molecules like proteins contain thousands of atoms that form extremely complex 3D structures. Being able to identify such structures is important because they directly affect how a molecule behaves in cells, and can often make the difference between life and death; for example, is caused by the misfolded version of an otherwise harmless . Determining 3D structures can be challenging, because biological molecules can be made up of the same atoms connected in the same order, but have radically different structures and therefore radically different effects. In a publication that made the cover of Angewandte Chemie, EPFL scientists used a new method based on infrared and UV lasers to more accurately determine the structure of biological molecules.

Proteins and tend to have extremely complex three-dimensional structures. The problem is complicated by the fact that they often exist as isomers, i.e. they have the same sequence of atoms but different . That means that simply knowing what a molecule is made of is not enough to understand what it looks like in three-. More information is needed, and that comes in the form of molecular "fingerprints" – characteristics of a molecule that reflect its 3D structure. Clearly, two isomers would not share the same structural characteristics, meaning that more fingerprints would make it easier to distinguish them.

Working out the structure of biological molecules begins by making several of what a molecule would look like, and then matching them to experimental data. Currently, one of the new and promising techniques providing such data is Cold Ion , which has been developed for over a decade at EPFL's Laboratory of Molecular Physical Chemistry (LCPM). Molecules are ionized, cooled close to absolute zero and then shot with infrared and UV lasers at different energies, each producing a different number of molecular fragments. These fragments are then measured by a mass spectrometer, which tells scientists about energy levels within the molecule.

EPFL scientists have now extended this approach to include a new fingerprint, greatly increasing the accuracy of structure determination. Oleg Boyarkine's team at LCPM discovered the way to measure precisely how much light a molecule can absorb, which is another fingerprint of its 3D structure. The atoms in a molecule are not at rest; rather, they vibrate at frequencies that depend on how the atoms are structured in space. As there are three vibrational frequencies for every atom, large like proteins can have hundreds to thousands of frequencies that together provide a unique fingerprint of the molecule's 3D structure.

By analyzing how Cold Ion Laser Spectroscopy works, the scientists came to the idea of how to measure what is called the absolute absorption intensity for each vibration of a molecule, creating a whole new fingerprint to work with. This makes it possible to identify the molecule's 3D structure with more certainty, because it is unlikely that two will have the same vibrational frequency and light absorption pattern at the same time.

The researchers first tested their new approach with a known antibiotic molecule made of 176 atoms. When that proved successful, they pushed the boundaries of spectroscopy and recorded the first ever "vibrational spectrum" for a protein called cytochrome c, which is critical in processing oxygen in our cells. Their breakthrough two-fingerprint approach advances structural chemistry and can allow scientists to faster and more accurately determine the structure of large biomolecules like polypeptides and proteins, which can have tremendous implications for biotechnology, clinical diagnostics, epidemiology (e.g. prion diseases), molecular biology and genetics, and wider biological endeavors.

Explore further: A new tool to reveal structure of proteins

More information: onlinelibrary.wiley.com/doi/10.1002/anie.201301656/abstract

Related Stories

A new tool to reveal structure of proteins

March 19, 2012

A new method to reveal the structure of proteins could help researchers understand biological molecules – both those involved in causing disease and those performing critical functions in healthy cells.

Visualizing the structures of molecules

December 5, 2012

Hitoshi Goto and colleagues have developed high performance molecular simulation tools to study the 3D arrangement of molecules, enabling better design of medicinal and agricultural drugs which are more effective and fewer ...

Recommended for you

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.