Separation of dicarboxylic acids through molecular recognition and mechanochemistry

May 3, 2013
Separation of dicarboxylic acids through molecular recognition and mechanochemistry

( —How does one separate a mixture of components with very similar properties? In the journal Angewandte Chemie, Croatian researchers have introduced a new approach to the separation of organic compounds. In their process, a "host compound" recognizes the desired "guest molecules", not only in solution, but also when the host and mixtures of competitive guest are milled together in the solid state. For the separation of maleic acid, this recognition through mechanochemistry delivers selectivity equal to that achieved by crystallization from a solution.

of dicarboxylic acids can be separated through crystallization, rectification, or extraction, processes often pushed to their limits because the dicarboxylic acids being separated have very similar chemical properties. Krunoslav Užarević and his co-workers at the Ruđer Bošković Institute and the University of Zagreb have now proposed an alternative method: separation through solid-state molecular recognition. Molecular recognition is the interaction of molecules that "fit" together without chemical bonding. Such interactions are known from phenomena such as enzyme recognition and DNA base pairing. This principle can also be used for the construction of supramolecular systems for nanotechnology. If one molecule is "lodged" inside another, the system is described as a host–guest interaction. Usually, molecular recognition is accomplished in solution, where the host and guest have the necessary mobility to come sufficiently close to one another and interact.

Separation of dicarboxylic acids by means of a host–guest interaction is challenging because the mixtures include or molecules that are very geometrically similar. This is the case for two important dicarboxylic acids, fumaric acid and maleic acid. Fumaric acid is an intermediate product in the of all cells. It has many applications in the food and . Maleic acid is used in polymer production, dying cotton, and decalcifying agents. Fumaric acid is usually obtained through the isomerization of maleic acid, which is harmful to health, so all residues of maleic acid must be scrupulously removed from the fumaric acid product.

As the host molecule for their separation, the research team selected a polyamine that consists of two oxygen-containing, six-membered, hydrocarbon rings bound together through a hydrocarbon chain that contains three amino groups. This compound is flexible and can crystallize in different conformations. This host molecule preferentially binds maleic acid. It grabs the maleic acid molecule between its two rings like a pair of tongs. It also selectively binds maleic acid in an excess of fumaric acid or four other related dicarboxylic acids. What is unusual is that this host–guest interaction works under conventional conditions, that is, when crystallizing the compounds out of a solution; as well as in the solid phase, when the dicarboxylic acid mixture is intensively milled together with the host molecule.

This type of selective binding and separation of guest molecules out of solid mixtures is, with the exception of a few pioneering experiments, a largely unexplored area of research. This work demonstrates that there is a vast potential of the molecular recognition for more environmentally friendly separation technologies.

Explore further: Surprisingly, chemists find, some solvents can alter chemical bonds

More information: Uzarevic, K. Dynamic Molecular Recognition in Solid State for Separating Mixtures of Isomeric Dicarboxylic Acids, Angewandte Chemie International Edition.

Related Stories

Recommended for you

Organic semiconductors get weird at the edge

October 6, 2015

As the push for tinier and faster electronics continues, a new finding by scientists at the University of British Columbia (UBC) and Monash University could help inform the design of the next generation of cheaper, more efficient ...

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.