New database helps researchers make phosphate-substrate connections

May 14, 2013
But what does it do?
All phosphatases in human cells, and their substrates – online and fully searchable. Credit: EMBL/Köhn

It is now easier to pinpoint exactly what molecules a phosphatase – a type of protein that's essential for cells to react to their environment – acts upon in human cells, thanks to the free online database DEPOD, created by EMBL scientists. Published today in Science Signaling, the overview of interactions could even help explain unforeseen side-effects of drugs.

Although we know the tool's general purpose, it can sometimes be difficult to tell if a specific pair of precision tweezers belongs to a surgeon or a master jeweller. It is now easier to solve similar conundrums about a type of protein that allows cells to react to their environment, thanks to scientists at the European Molecular Biology Laboratory (EMBL). Published today in Science Signaling, their work offers a valuable resource for other researchers.

Whether in your eye being hit by light, in your blood fighting off disease, or elsewhere throughout your body, cells have to react to changes in their environment. But first, a cell must 'know' the environment has changed. One of the ways in which that information is transmitted within the cell is through tags called phosphate ions, which are added to or removed from specific molecules depending on the exact message that has to be conveyed. The tools the cell uses to remove phosphate ions are proteins called phosphatases. But it's not always obvious what molecules – or substrates – a particular phosphatase acts upon.

But what does it do?
The web-like overview of interactions could even help explain unforeseen side-effects of drugs. Credit: EMBL/Köhn

"One of the biggest challenges in phosphatase research is finding substrates, and this is what our work supports," says Maja Köhn from EMBL in Heidelberg, Germany, who led the study. "We've made it easier to create hypotheses about the relationships between phosphatases and their substrates."

Xun Li, a post-doctoral student shared by Köhn's lab and those of Matthias Wilmanns at EMBL in Hamburg, Germany and Janet Thornton at EMBL-European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK, compiled the most complete picture to date of all the phosphatases in , and their substrates. The scientists also grouped phosphatases into families, based on their three-dimensional structure, which can influence what molecules a phosphatase can act upon.

This information allows researchers to easily identify a phosphatase's known substrates, and suggest new substrates based on how similar it is to other phosphatases. The web-like overview of interactions could even help explain unforeseen side-effects of drugs designed to interfere with phosphatases or with their phosphate-adding counterparts, kinases. To enable others to make such connections, Köhn and colleagues have created a free online database, DEPOD.

"When people have unexpected results, this could be a place to find explanations," says Thornton, head of EMBL-EBI. "DEPOD combines a wealth of information that can be explored in a variety of ways, to make it useful not just to phosphatase researchers but to the wider community."

Explore further: Scientists create mouse model to accelerate research on Ebola vaccines, treatments

More information: Li, X., Wilmanns, M., Thornton, J., & Köhn, M. Elucidating Human Phosphatase-Substrate Networks. Published online in Science Signaling on 14 May 2013. DOI: 10.1126/scisignal.2003203.

add to favorites email to friend print save as pdf

Related Stories

DNA catalysts do the work of protein enzymes

Mar 19, 2013

(Phys.org) —Illinois chemists have used DNA to do a protein's job, creating opportunities for DNA to find work in more areas of biology, chemistry and medicine than ever before.

Recommended for you

Researchers capture picture of microRNA in action

Oct 30, 2014

Biologists at The Scripps Research Institute (TSRI) have described the atomic-level workings of "microRNA" molecules, which control the expression of genes in all animals and plants.

Blocking a fork in the road to DNA replication

Oct 30, 2014

A team of Whitehead Institute scientists has discovered the surprising manner in which an enigmatic protein known as SUUR acts to control gene copy number during DNA replication. It's a finding that could shed new light on ...

Cell division, minus the cells

Oct 30, 2014

(Phys.org) —The process of cell division is central to life. The last stage, when two daughter cells split from each other, has fascinated scientists since the dawn of cell biology in the Victorian era. ...

A new method simplifies the analysis of RNA structure

Oct 30, 2014

To understand the function of an RNA molecule, similar to the better-known DNA and vital for cell metabolism, we need to know its three-dimensional structure. Unfortunately, establishing the shape of an RNA ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.