Dad's genome more ready at fertilization than mom's is—but hers catches up

May 09, 2013

Researchers from Huntsman Cancer Institute (HCI) at the University of Utah have discovered that while the genes provided by the father arrive at fertilization pre-programmed to the state needed by the embryo, the genes provided by the mother are in a different state and must be reprogrammed to match. The findings have important implications for both developmental biology and cancer biology.

In the earliest stages, have the potential to develop into any type of cell, a state called totipotency. Later, this potency becomes restricted through a process called differentiation. As a result, as continue to differentiate, they give rise to only a subset of the possible cell types.

"In cancer, normal processes of and growth go wrong, and cells either become arrested at an early state of differentiation, or instead go backwards and are 'reprogrammed' to become more like early embryo cells," said Bradley R. Cairns, co-author of the article and Senior Director of Basic Science at HCI. "By understanding how cells are normally programmed to the totipotent state, and how they develop from that totipotent state into specific cell types, we hope to better understand how misregulate this process, and to use that knowledge to help us devise strategies to reverse this process." The research results will be published online as the cover story in the journal Cell on May 9.

Earlier work in the Cairns Lab showed that most genes important for guiding the early development of the embryo are already present in human of the father in a "poised" state—turned off, but with attached markers that make easy. "The logic is that all the important decision-making genes for early development are ready to go," said Cairns. "This poised state is never seen in fully differentiated cells such as ."

In the current study, researchers in the Cairns Lab used high-throughput to comprehensively and precisely analyze DNA methylation patterns in the genomes of zebrafish, which is a common laboratory model both for developmental and . Here, they examined egg cells, sperm cells, and four phases of embryonic development: three phases between fertilization and when the embryo's genome becomes active, and one phase after that point. Methylation—in which molecules called methyl groups are selectively attached to certain areas of the DNA and turn off gene activity in those areas—is one of the main markers of gene poising; poised genes lack DNA methylation, enabling gene activity later in embryo development.

Cairns' group found that the methylation pattern of the soon-to-differentiate embryo is identical to that of the sperm cell. In contrast, the pattern of the egg cell was initially quite different, but undergoes a striking set of changes to become exactly matched to that of the sperm DNA. Cairns' work suggests that egg DNA goes through this extensive reprogramming to prepare for the process of differentiation.

"The maternal genes that underwent DNA methylation reprogramming are among the most important loci for determining embryo development," said Cairns. "For example, many hox genes, which determine the body plan and also differentiation during hematopoiesis [the formation of blood cells], are methylated in the mother's genetic contribution and demethylated in the father's, and therefore, also in the embryo."

He said the work added another interesting finding. "We found that the mother's genome takes care of that remodeling on its own, without using the father's genome as a template." Cairns' experiments showed that when the father's genetic contribution was removed, the mother's genome still remodeled itself to the correct state.

"Basically, we're trying to understand how a single cell can make a decision to be any type of cell," said Cairns. "It is a fascinating fundamental question in biology that has implications for all aspects of development and many aspects of diseases such as cancer."

Explore further: Students use physics to unpack DNA, one molecule at a time

Related Stories

In cancer, an embryonic gene-silencing mechanism gone awry

Oct 04, 2012

There are some genes that are only activated in the very first days of an embryo's existence. Once they have accomplished their task, they are shut down forever, unlike most of our genes, which remain active throughout our ...

Timing germ cell development

Mar 15, 2013

(Phys.org) —Scientists from the Friedrich Miescher Institute for Biomedical Research identify a novel mechanism in early germ cell development. They show how the chromatin modulator PRC1 coordinates the ...

Recommended for you

Fighting bacteria—with viruses

1 hour ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

2 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0