Researchers manipulate cubic zirconia to improve conductivity in fuel cells

May 23, 2013 by Karen B. Roberts
UD's Joshua Hertz leads a research team that is manipulating cubic zirconia to improve conductivity in fuel cells. Credit: Kathy F. Atkinson

(Phys.org) —Cubic zirconia has long been favored for its use in costume jewelry. Known scientifically as yttria-stabilized zirconia, it is also a known conductor of oxygen, making it useful as an electrolyte in solid oxide fuel cells.

Researchers at the University of Delaware recently fabricated the material into very on the surface of sapphire crystals using a technique called sputtering to determine whether the conductivity for oxygen could be improved, enabling to become a more economical and efficient electrical power source.

In their study, Joshua Hertz and his team examined the effect of reducing the thickness of the yttria-stabilized zirconia down to about 6 —roughly 20 atoms thick.

The research team found that a consequence of making the material so thin is that the distance between the atoms increases, stretching as much as roughly 2 percent.

"This may sound like a small amount, but it represents a very large effect for this material, which, like most ceramics, does not easily stretch," explained Hertz, assistant professor of mechanical engineering.

More importantly, the stretching increased the material's oxygen conductivity by a factor of 10.

This improved conductivity may open the door for more efficient and durable solid state electrochemical devices like solid oxide fuel cells and that can operate at reduced temperatures.

The team reported their findings in Applied Physics Letters, a high-impact scientific journal. The paper is titled "Improved ionic conductivity in strained yttria-stabilized zirconia thin films."

"We believe similar methods may be of use to batteries and other devices that use different solid electrolyte materials," added the paper's lead author Jun Jiang, a UD doctoral student studying .

Explore further: Ceramic, heal thyself

More information: link.aip.org/link/doi/10.1063/1.4801649

Related Stories

Ceramic, heal thyself

April 17, 2008

A new computer simulation has revealed a self-healing behavior in a common ceramic that may lead to development of radiation-resistant materials for nuclear power plants and waste storage.

Promising doped zirconia

May 17, 2013

Materials belonging to the family of dilute magnetic oxides (DMOs)—an oxide-based variant of the dilute magnetic semiconductors—are good candidates for spintronics applications. This is the object of study for Davide ...

Recommended for you

Meet the high-performance single-molecule diode

July 29, 2015

A team of researchers from Berkeley Lab and Columbia University has passed a major milestone in molecular electronics with the creation of the world's highest-performance single-molecule diode. Working at Berkeley Lab's Molecular ...

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.