Colorado's new alga may be a source of biofuel production

May 28, 2013

A new strain of yellow-green algae, heterococcus sp. DN1, which may prove to be an efficient source for biodiesel, has been discovered in the snow fields of the Rocky Mountains. Research examining this new alga, published in Biotechnology Progress, reveals that H. sp. DN1 was found to grow at temperatures approaching freezing and to accumulate large intracellular stores of lipids. H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures.

Algae that can grow in extreme conditions and accumulate lipids are of great interest to industry. The team found that as H. sp. DN1 produces the highest quantity of lipids when grown undisturbed with high light in low temperatures, it is a potential source of lipids for human nutrition when grown undisturbed, and it has an ideal lipid profile for biofuel production when stressed.

"We have isolated and characterized a new cold-tolerant lipid-producing strain of algae from the in Colorado, US," said Dr. David Nelson. "This may have implications for the commercial production of algal lipids at northern latitudes where the culture of other is limited or impossible."

Explore further: Getting a jump on plant-fungal interactions

More information: David Nelson, Sinafik Mengistu, Paul Ranum, Gail Celio, Mara Mashek, Douglas Mashek, Paul Lefebvre, "New lipid-producing, cold-tolerant yellow-green alga isolated from the Rocky Mountains of Colorado", Biotechnology Progress, Wiley, DOI: 10.1002/btpr.1755

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Getting a jump on plant-fungal interactions

21 hours ago

Fungal plant pathogens may need more flexible genomes in order to fully benefit from associating with their hosts. Transposable elements are commonly found with genes involved in symbioses.

The microbes make the sake brewery

Jul 24, 2014

A sake brewery has its own microbial terroir, meaning the microbial populations found on surfaces in the facility resemble those found in the product, creating the final flavor according to research published ahead of print ...

User comments : 0