Clam fossils divulge secrets of ecologic stability

May 15, 2013

Clam fossils from the middle Devonian era – some 380 million years ago – now yield a better paleontological picture of the capacity of ecosystems to remain stable in the face of environmental change, according to research published today (May 15) in the online journal PLOS ONE.

Trained to examine species abundance – the head counts of specimens – paleontologists test the stability of Earth's past ecosystems. The research shows that factors such as predation and organism from epochs-gone-by can now be considered in such detective work.

Back 380 million years ago, New York was under the Devonian sea. Today, the fossils found in the rocks of this region have become well known for documenting long-term stability in species composition – that is, the same species have been found to persist with little change over a 5 million year period. But research has found that species abundance in this ancient ecosystem went up and down, generating debate among paleontologists whether the fauna, as a whole, was also stable in terms of its ecology.

A team of Cornell, Institution (PRI) – an affiliate of Cornell University – and University of Cincinnati researchers revisited this debate by examining the ecological stability of the Devonian clam fauna.

"To understand how these species fared in the Devonian, you have to look at how they interacted with other species. There is more to ecology than just the abundance and distribution of species," said Gregory Dietl, Cornell adjunct professor, earth and atmospheric sciences, and a paleontologist at PRI.

The research, "Abundance Is Not Enough: The Need for Multiple Lines of Evidence in Testing for Ecological Stability in the ," was written by Judith Nagel-Myers, , PRI; John Handley, PRI; Carlton Brett, University of Cincinnati professor of geology; and Dietl.

The scientists took a new approach to testing ecological stability: In addition to counting numbers of clams, they examined repair scars on fossil clams that were left by the unsuccessful attacks from shell-crushing predators, and the body size of the clam assemblage as it yields biological information on the structure of food webs.

"Surprisingly, pressure and the body size structure of the clams remained stable, even as abundance varied," said Nagel-Myers. Possible mechanisms that explain the clam assemblage's stability are related to the dynamics of food webs – the same mechanisms operating in food webs today. In one mechanism, predators switched between feeding on different clam species as their abundance varied.

The ancient Devonian ecosystem was more complex than previously thought, as it cautions scientists against basing conclusions on a single factor. Said Dietl: "Our results thus raise serious doubt as to whether ecological stability can be tested meaningfully, solely based upon the abundance of taxa, which has been the standard metric used to test for ecological stability in paleoecology."

Explore further: The winners of mass extinction: With predators gone, prey thrives

Related Stories

Androgenetic species of clam utilizes rare gene capture

May 24, 2011

(PhysOrg.com) -- In a new study published in the Proceedings of the National Academy of Sciences, biologist David Hillis from the University of Texas shows how the freshwater Corbicula clam utilizes rare gene capture to avoid ...

Local dig uncovers new species of ancient fish

March 7, 2013

(Phys.org) —Researchers from The Australian National University (ANU) working on the New South Wales south coast have discovered a new species of ancient fish, after unearthing the largest fossilised lobe-finned fish skull ...

Razor clam research has a sharp edge

April 4, 2013

(Phys.org) —A barefoot encounter with a Razor Clam is not a pleasant experience, just ask anyone who has had their feet sliced open in the shallows of picturesque Lake Macquarie, north of Sydney.

Recommended for you

Research advances on transplant ward pathogen

August 28, 2015

The fungus Cryptococcus causes meningitis, a brain disease that kills about 1 million people each year—mainly those with impaired immune systems due to AIDS, cancer treatment or an organ transplant. It's difficult to treat ...

Genomes uncover life's early history

August 24, 2015

A University of Manchester scientist is part of a team which has carried out one of the biggest ever analyses of genomes on life of all forms.

Rare nautilus sighted for the first time in three decades

August 25, 2015

In early August, biologist Peter Ward returned from the South Pacific with news that he encountered an old friend, one he hadn't seen in over three decades. The University of Washington professor had seen what he considers ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.