Breakthrough technology quickly separates large proteins and viruses from their surroundings

May 22, 2013
Biopurification: Convection trumps diffusion
Viruses can be captured efficiently and with high precision on chromatographic surfaces using a technique developed at the A*STAR Bioprocessing Technology Institute. Credit: iStockphoto/Thinkstock

Researchers looking to isolate individual proteins from complex environments usually turn to chromatography, a technique where mobile solutions of biomolecules flow through columns packed with solid, porous particles. Separation occurs when attractive chemical forces cause the molecules to adsorb onto the solid while contaminants pass through. Despite major progress, however, chromatographic purification of viruses and other large biomolecules remains challenging: their spatial heft makes it hard for them to diffuse through columns in a reasonable amount of time.

Pete Gagnon and co-workers at the A*STAR Bioprocessing Technology Institute in Singapore have discovered a new approach that can boost the capacity and resolution of large-scale biological purifications. Instead of relying on chemical attraction, the team's 'steric exclusion chromatography' (SXC) technique exploits the physical distribution of biomolecules and a dissolved polymer to drive adsorption at a chromatography surface—a strategy that generates extremely fast binding kinetics and virus purification efficiencies thousands of times greater than current techniques.

No two compounds dissolved in a solution can occupy the same space. In addition, random movements and collisions create narrow zones adjacent to surfaces where smaller dissolved are statistically absent. As these zones create excess free energy, materials in the solution spontaneously rearrange themselves to reduce the excess.

Gagnon and his team exploited this effect by dissolving proteins into (PEG), creating PEG-free zones around the biomolecules and an inert chromatography surface. When the biomolecules randomly encounter the surface, their PEG-deficient zones fuse together to reduce the system's and they become stabilized on the solid support. Because larger biological species are more affected by this phenomenon, they tend to associate with the chromatography surface, whereas smaller compounds are swept through the column and eliminated.

By performing the separation in special monolithic columns that transport dissolved materials through convection, not diffusion, the researchers were able to purify viruses with unprecedented . They achieved binding capacities of 10 trillion virus particles per milliliter of monolith, despite the passage time through the column being only six seconds. Some 99.8% of E. coli proteins and 93% of DNA contaminants were removed. Virus recovery was 90%, and critically, the viruses retained full biological activity.

Gagnon notes that this unexpected discovery drastically improves upon the sluggishness and low efficiency problems currently associated with size-based chromatography methods. "Steric exclusion chromatography provides process developers with a rapid, high-precision tool needed to support effective and economical industrial purification."

Explore further: Dead feeder cells support stem cell growth

More information: Lee, J., Gan, H. T., Latiff, S. M. A., Chuah, C., Lee, W. Y. et al. Principles and applications of steric exclusion chromatography. Journal of Chromatography A 1270, 162–170 (2012). dx.doi.org/10.1016/j.chroma.2012.10.062

Related Stories

Researchers apply NMR/MRI to microfluidic chromatography

Jul 06, 2011

By pairing an award-winning remote-detection version of NMR/MRI technology with a unique version of chromatography specifically designed for microfluidic chips, researchers with the U.S. Department of Energy ...

A liquid crystal force to reckon with

May 02, 2013

A need for fast, solution-based processing of organic electronic devices has sparked increased interest in 'discotic' or disc-shaped liquid crystals. These molecules, which contain a flat aromatic core surrounded ...

Recommended for you

Dead feeder cells support stem cell growth

Apr 24, 2015

Stem cells naturally cling to feeder cells as they grow in petri dishes. Scientists have thought for years that this attachment occurs because feeder cells serve as a support system, providing stems cells ...

Improving accuracy in genome editing

Apr 23, 2015

Imagine a day when scientists are able to alter the DNA of organisms in the lab in the search for answers to a host of questions. Or imagine a day when doctors treat genetic disorders by administering drugs ...

Drug research enhanced by fragment screening libraries

Apr 22, 2015

Generation of fragment screening libraries could enhance the analysis and application of natural products for medicinal chemistry and drug discovery, according to Griffith University's Professor Ronald Quinn.

Decoding the cell's genetic filing system

Apr 22, 2015

A fully extended strand of human DNA measures about five feet in length. Yet it occupies a space just one-tenth of a cell by wrapping itself around histones—spool-like proteins—to form a dense hub of ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.