Breakthrough calls time on bootleg booze

May 20, 2013
A new technique for detecting dangerous fake whisky, and other spirits, has been developed by researchers at the University of St Andrews.

( —Using a laser, the St Andrews scientists can now carry out detailed analysis of a spirit sample no bigger than a teardrop and can even confirm whether it is toxic or not. It's hoped the testing breakthrough will help cut the worldwide toll of death and serious injury arising from consumption of fake and adulterated spirits.

This technique could see portable detectors created which would allow people to test their drinks when out and about.

Writing in the Journal of Raman Spectroscopy, Praveen Ashok, Bavishna Balagopal and Professor Kishan Dholakia of the School of Physics and Astronomy at the University, reveal how they can place a "teardrop" of on a transparent "plastic chip, no bigger than a credit card".

Light is then delivered to, and collected from, the liquor sample using - each has the dimensions of a - to diagnose the sample by a collection of light scattered from it.

Previous work by the team showed they were able to investigate and discriminate single malt Scotch whiskies based on brand, age and even which cask had been used.

The method exploits both the fluorescence of the whisky and also what is known as the Raman signature of the whisky - this is when light scatters but shifts slightly in energy due to interaction with the molecules in the sample. The latest study now shows this elegant technique is highly sensitive and can be used to detect trace toxic additives such as at concentrations of less than 1 per cent by volume.

Researcher Praveen Ashok said: "Sadly, many people lose their lives each year to bootleg drinks and our hope is to see this powerful, simple technology used to alleviate this serious issue".

Researcher Bavishna Balagopal said: "It is exciting to see the surprising and powerful ways modern can help people, particularly in ."

Professor Kishan Dholakia added: "This technology not only can ensure a high degree of for the international drinks industry but could also lead to portable sensors to ensure everyone can enjoy a drink, safe in the knowledge that no toxic additives are present."

Toxic liquor claims hundreds of lives all around the world every year. Especially in Afro-Asian countries, where illegal moonshine liquors are common, methanol is often intentionally added to increase the effect of the liquor.

The researchers are hoping to interest industry with their technology which is patented.

Explore further: Shedding new light on cancer

More information: DOI: 10.1002/jrs.4301

Related Stories

Shedding new light on cancer

January 22, 2010

( -- Researchers at the University of St Andrews have developed a powerful technique that could allow earlier cancer detection.

Whisky a no go

January 26, 2012

The Scottish Government is in danger of sabotaging the nation’s greatest export, according to a leading whisky expert.

Recommended for you

Scientists float new approach to creating computer memory

October 8, 2015

What can skyrmions do for you? These ghostly quantum rings, heretofore glimpsed only under extreme laboratory conditions, just might be the basis for a new type of computer memory that never loses its grip on the data it ...

Fusion reactors 'economically viable' say experts

October 2, 2015

Fusion reactors could become an economically viable means of generating electricity within a few decades, and policy makers should start planning to build them as a replacement for conventional nuclear power stations, according ...

Perfectly accurate clocks turn out to be impossible

October 7, 2015

Can the passage of time be measured precisely, always and everywhere? The answer will upset many watchmakers. A team of physicists from the universities of Warsaw and Nottingham have just shown that when we are dealing with ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.