How do braided river dynamics affect sediment storage?

May 09, 2013

Braided rivers, with their continuously changing network of channels, are highly dynamic systems. Four mechanisms of channel change and evolution are considered the classic mechanisms of braided river formation: development of central bars, conversion of single transverse bars to mid-channel braid bars, formation of chutes, and dissection of multiple-braid bars.

There have been few studies on how each of these braiding mechanisms contributes to changes in sediment storage and to the dynamics of a river. In one of the first field studies on the topic, Wheaton et al. analyzed repeat topographic surveys conducted over a 5- year period of the River Feshie, an active, braided, gravel-bed river in the United Kingdom.

They find that collectively, the four classic braiding mechanisms accounted for most of the change in sediment storage. However, their results highlight the critical role that bank erosion and other non-braiding mechanisms play in facilitating net increases in sediment storage by braiding mechanisms through providing an important local supply of sediment to feed those braiding mechanisms and through creating accommodation space where central bars can develop.

Explore further: Identifying the physical processes that control the stratigraphic record

More information: Morphodynamic signatures of braiding mechanisms as expressed through change in sediment storage in a gravel-bed river, Journal of Geophysical Research-Earth Surface, doi:10.1002/jgrf.20060, 2013 http://onlinelibrary.wiley.com/doi/10.1002/jgrf.20060/abstract

add to favorites email to friend print save as pdf

Related Stories

For first time, meandering river created in laboratory

Sep 20, 2012

Natural rivers are not straight, and they are rarely idle. Instead, they bend and curve and sometimes appear to wriggle across the surface over time. That rivers can meander is obvious but how and why they do so is less well ...

River beds on the move: Shifting flood risk?

Apr 24, 2013

(Phys.org) —A detailed study of shifting river beds, conducted by researchers at the University of St Andrews, could hold the key to more accurate flood prevention.

Recommended for you

NASA gets two last looks at Tropical Cyclone Jack

17 hours ago

Tropical Cyclone Jack lost its credentials today, April 22, as it no longer qualified as a tropical cyclone. However, before it weakened, NASA's TRMM satellite took a "second look" at the storm yesterday.

Krypton used to accurately date ancient Antarctic ice

Apr 21, 2014

A team of scientists has successfully identified the age of 120,000-year-old Antarctic ice using radiometric krypton dating – a new technique that may allow them to locate and date ice that is more than ...

Taking the pulse of mountain formation in the Andes

Apr 21, 2014

Scientists have long been trying to understand how the Andes and other broad, high-elevation mountain ranges were formed. New research by Carmala Garzione, a professor of earth and environmental sciences ...

User comments : 0

More news stories

60% of China underground water polluted: report

Sixty percent of underground water in China which is officially monitored is too polluted to drink directly, state media have reported, underlining the country's grave environmental problems.

Florida is 'Ground Zero' for sea level rise

Warm sunshine and sandy beaches make south Florida and its crown city, Miami, a haven for tourists, but the area is increasingly endangered by sea level rise, experts said Tuesday.

NASA gets two last looks at Tropical Cyclone Jack

Tropical Cyclone Jack lost its credentials today, April 22, as it no longer qualified as a tropical cyclone. However, before it weakened, NASA's TRMM satellite took a "second look" at the storm yesterday.

In the 'slime jungle' height matters

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Robot scouts rooms people can't enter

(Phys.org) —Firefighters, police officers and military personnel are often required to enter rooms with little information about what dangers might lie behind the door. A group of engineering students at ...

New alfalfa variety resists ravenous local pest

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...