Fetch, boy! Study shows homes with dogs have more types of bacteria

May 22, 2013
For the NC State study, citizen scientists in 40 homes sampled nine common surfaces to help researchers determine what kinds of bacteria lived there, and in what relative numbers. Here, one of the citizen scientists is sampling the surface of a cutting board. Credit: Holly Menninger, North Carolina State University

New research from North Carolina State University and the University of Colorado shows that households with dogs are home to more types of bacteria – including bacteria that are rarely found in households that do not have dogs. The finding is part of a larger study to improve our understanding of the microscopic life forms that live in our homes.

"We wanted to know what variables influence the microbial ecosystems in our homes, and the biggest difference we've found so far is whether you own a dog," says Dr. Rob Dunn, an associate professor of biology at NC State and co-author of a paper describing the work. "We can tell whether you own a dog based on the we find on your television screen or pillow case. For example, there are bacteria normally found in soil that are 700 times more common in dog-owning households than in those without dogs."

And these microbial differences may be important. For example, it's known that women who have a dog in the home when pregnant are less likely to have children with allergies. This is a correlation – there's no known causal link between the presence of a dog and the absence of allergies – but it has been hypothesized that the difference is related to the women's exposure to a wider variety of . However, to this point there were few data on what the differences in microbial populations might be. While this study doesn't demonstrate a causal link, it sheds more light on the subject, showing that dogs have a major influence on which microbes are found in our homes.

in 40 homes sampled nine common surfaces to help researchers determine what kinds of bacteria lived there, and in what relative numbers. The nine surfaces were wiped with sterile swabs from which researchers collected DNA to see which organisms were present. The nine surfaces were the television screen, kitchen counter, refrigerator, toilet seat, cutting board, pillow case, exterior door handle, the trim around an interior door and the trim around an exterior door.

The study found 7,726 phylotypes, or kinds, of bacteria in the homes. The study also found that each of the locations sampled harbored its own unique collection of bacteria. Researchers were able to group the sampled surfaces in the homes into one of three general habitats: places we touch, places our food touches and places that collect dust. For example, the types of bacteria found in refrigerators, on kitchen counters and on cutting boards tended to be similar – because they were primarily linked to our food. Meanwhile, the bacteria found on doorknobs, pillow cases and toilet seats were also fairly similar – and came from humans.

The NC State study found that each of the locations sampled in homes harbored its own unique collection of bacteria. The nine sites sampled in each home were the television screen, kitchen counter, refrigerator, toilet seat, cutting board, pillow case, exterior door handle, the trim around an interior door and the trim around an exterior door. Credit: Neil McCoy and Hayley Stansell

"We leave a microbial 'fingerprint' on everything we touch," Dunn says. "Sometimes those microbes come from our skin, sometimes they're oral bacteria and – as often as not – they're human fecal bacteria."

The research also shows that the difference between habitats is greater than the difference between homes. For example, the bacteria on my pillow case are probably more similar to the bacteria on your pillow case than they are to the bacteria on my kitchen counter.

"This makes sense," Dunn says. "Humans have been living in houses for thousands of years, which is sufficient time for organisms to adapt to living in particular parts of houses. We know, for example, that there is a species that only lives in hot-water heaters. We deposit these bacterial hitchhikers in different ways in different places, and they thrive or fail depending on their adaptations."

The researchers are currently processing samples from another 40 homes, and are preparing to process samples from a national survey of 1,300 homes across the United States. The national survey sampled four sites in each home, representing the various habitats.

"The larger sample size will help us better understand the range of variables that influence these ," Dunn says. "Does it matter if you have kids or live in an apartment? We expect the microbial populations of homes in deserts to be different from the populations of homes in Manhattan, but no one knows if that's true. We want to find out."

Explore further: Scientists find key to te first cell differentiation in mammals

More information: The paper, "Home Life: Factors structuring the bacterial diversity found within and between homes," will be published in PLOS ONE May 22.

add to favorites email to friend print save as pdf

Related Stories

Belly button bacteria under the microscope

Nov 08, 2012

(Phys.org)—Researchers have discovered which bacteria species are most commonly found in our bellybuttons, but have still not discovered what governs which species will be found on which people. These are ...

We're surrounded! House dust is a rich source of bacteria

Apr 08, 2008

If you’ve always suspected there are unknown things living in the dark and dusty corners of your home and office, we are now one step closer to cataloguing exactly what might be lurking in your indoor environment. Buildings ...

Recommended for you

Research helps identify memory molecules

3 hours ago

A newly discovered method of identifying the creation of proteins in the body could lead to new insights into how learning and memories are impaired in Alzheimer's disease.

Computer simulations visualize ion flux

4 hours ago

Ion channels are involved in many physiological and pathophysiological processes throughout the human body. A young team of researchers led by pharmacologist Anna Stary-Weinzinger from the Department of Pharmacology ...

Neutron diffraction sheds light on photosynthesis

4 hours ago

Scientists from ILL and CEA-Grenoble have improved our understanding of the way plants evolved to take advantage of sunlight. Using cold neutron diffraction, they analysed the structure of thylakoid lipids found in plant ...

DNA may have had humble beginnings as nutrient carrier

Sep 01, 2014

New research intriguingly suggests that DNA, the genetic information carrier for humans and other complex life, might have had a rather humbler origin. In some microbes, a study shows, DNA pulls double duty ...

Central biobank for drug research

Sep 01, 2014

For the development of new drugs it is crucial to work with stem cells, as these allow scientists to study the effects of new active pharmaceutical ingredients. But it has always been difficult to derive ...

User comments : 0