Biosensor that detects antibiotic resistance brings us one step closer to fighting superbugs

May 8, 2013

On May 8th JoVE will publish research that demonstrates how a biosensor can detect antibiotic resistance in bacteria. This new technology is a preliminary step in identifying and fighting superbugs, a major public health concern that has led to more deaths than AIDS in the United States in recent years. The technology is the result of collaboration between Dr. Vitaly Vodyanoy at Auburn University and the Keesler Air Force Base with funding from the United States Air Force.

Louis Pasteur and Robert Koch first characterized antibiosis, the ability for a chemical to kill , in 1877. Since then, the medical and biochemical communities have made great advances in the treatment of bacterial infections. These advances have helped reduce and have contributed to the of the 20th Century. However, natural selection has allowed to flourish and propagate, and continued exposure has lead to the evolution of "superbugs" that are resistant to multiple types of antibiotics.

This video is not supported by your browser at this time.
Credit: jove.com

"Antibiotic resistant bacteria is a serious problem," Dr. Vodyanoy says. "It is very important [when treating a patient] to distinguish between normal and resistant bacteria; if you have a case of resistance you have to take special measures to cure it."

Dr. Vodyanoy's technology takes advantage of bacteriophages, simple viruses that can target and kill bacteria. A , when combined with specific antibodies, can be used to produce a physical color change in a sample that indicates antibiotic resistance. This technology will be invaluable to clinicians trying to treat patients and disinfect hospital facilities.

Specifically, this technique targets antibiotic resistant Staphylococcus, one of the first pathogens characterized as a superbug. Staphylococcus, commonly referred to as staph, often is a bothersome cured with common antibiotics. However, variations of the can turn deadly when infecting immune-compromised patients or internal organs like lungs and the respiratory tract. The disease is of particular concern to hospitals, prisons, and branches of the military, where individuals are at risk for infection from unhygienic close quarters.

"In our method, we can determine bacterial antibiotic resistance in 10-12 minutes, while other methods take hours," Dr. Vodyanoy explains. Alternative methods used to detect antibiotic resistance need time-intensive purification steps before multi-hour sequencing protocols. "We envision a future where clinicians do tests with real blood or saliva samples. The virus is completely benign to humans, and we hope to use it to make antimicrobial surfaces and glassware that kill the bacteria."

"Our technique is complex and involves many steps and disciplines. It is very difficult to visualize when you read a paper, and we felt it would be very beneficial and educational to publish [in JoVE]," Dr. Vodyanoy says of publishing in the world's first video journal. "We are interested in someone else reproducing our results; this technology can be used on a larger scale and for antibiotic resistance other than Staphylococcus."

Explore further: Researchers find compound effective in destroying antibiotic-resistant biofilms

More information: Vodyanoy et. al, The Journal of Visualized Experiments: www.jove.com/video/50474/biosensor-for-detection-antibiotic-resistant-staphylococcus

Related Stories

'Stressed' bacteria become resistant to antibiotics

February 21, 2013

Bacteria become resistant to antibiotics when stressed, finds research published in BioMed Central's open access journal BMC Evolutionary Biology. In particular E. coli grown at high temperatures become resistant to rifampicin.

Recommended for you

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.