Biomaterial shows promise for Type 1 diabetes treatment

May 9, 2013
Andrés Garcia, Georgia Tech professor of mechanical engineering, and Emory researchers have successfully engrafted insulin-producing cells into a diabetic mouse model, reversing diabetic symptoms in the animal in as little as 10 days.

(Phys.org) —Researchers have made a significant first step with newly engineered biomaterials for cell transplantation that could help lead to a possible cure for Type 1 diabetes, which affects about 3 million Americans.

Georgia Tech engineers and Emory University clinicians have successfully engrafted insulin-producing cells into a diabetic , reversing diabetic symptoms in the animal in as little as 10 days.

The research team engineered a biomaterial to protect the cluster of insulin-producing cells – donor pancreatic islets – during injection. The material also contains proteins to foster blood vessel formation that allow the cells to successfully graft, survive and function within the body.

"It's very promising," said Andrés Garcia, Georgia Tech professor of mechanical engineering. "There is a lot of excitement because not only can we get the islets to survive and function, but we can also cure diabetes with fewer islets than are normally needed."

The research article – a partnership with Emory's Dr. Robert Taylor and Dr. Peter Thule that was funded in part by the JDRF, the leading global organization funding research – will be published in the June issue of the journal Biomaterials.

Organizations such as JDRF are dedicated to finding a cure for Type 1 diabetes, a chronic disease that occurs when the pancreas produces little or no insulin, a hormone that allows the transport of sugar and other nutrients into tissues where they are converted to energy needed for daily life.

Pancreatic islet transplantation re-emerged as a promising therapy in the late 1990s. Patients with diabetes typically find it difficult to comply with multiple daily insulin injections, which only partially improve long-term outcomes. Successful islet transplantation would remove the need for patients to administer insulin. While trials have had some success, and control of is often improved, diabetic symptoms have returned in most patients and they have had to revert to using some insulin.

Unsuccessful transplants can be attributed to several factors, researchers say. The current technique of injecting islets directly into the blood vessels in the liver causes approximately half of the cells to die due to exposure to blood clotting reactions. Also, the islets – metabolically active cells that require significant blood flow – have problems hooking up to blood vessels once in the body and die off over time.

Georgia Tech and Emory researchers engineered a hydrogel, a material compatible with biological tissues that is a promising therapeutic delivery vehicle. This water-swollen, cross-linked polymer surrounds the insulin-producing cells and protects them during injection. The hydrogel containing the islets was delivered to a new injection site on the outside of the small intestine, thus avoiding direct injection into the blood stream.

Once in the body, the hydrogel degrades in a controlled fashion to release a growth factor protein that promotes and connection of the transplanted islets to these new vessels. In the study, the blood vessels effectively grew into the biomaterial and successfully connected to the insulin-producing cells.

Four weeks after the transplantation, diabetic mice treated with the hydrogel had normal glucose levels, and the delivered islets were alive and vascularized to the same extent as islets in a healthy mouse pancreas. The technique also required fewer islets than previous transplantation attempts, which may allow doctors to treat more patients with limited donor samples. Currently, donor cells from two to three cadavers are needed for one patient.

While the new biomaterial and injection technique is promising, the study used genetically identical mice and therefore did not address immune rejection issues common to human applications. The research team has funding from JDRF to study whether an immune barrier they created will allow the cells to be accepted in genetically different mice models. If successful, the trials could move to larger animals.

"We broke up our strategy into two steps," said Garcia, a member of Georgia Tech's Petit Institute for Bioengineering and Bioscience. "We have shown that when delivered in the material we engineered, the will survive and graft. Now we must address immune acceptance issues."

Most people with Type 1 diabetes currently manage their blood glucose levels with multiple daily or by using an insulin pump. But insulin therapy has limitations. It requires careful measurement of glucose levels, accurate dosage calculations and regular compliance to be effective.

More information: Phelps, E. et al. Vasculogenic Bio-Synthetic Hydrogel for Enchancement of Pancreatic Islet Engraftment and Function in Type 1 Diabetes, Biomaterials, June 2013, Pages 4602-4611.

Related Stories

Recommended for you

New polymer able to store energy at higher temperatures

July 30, 2015

(Phys.org)—A team of researchers at the Pennsylvania State University has created a new polymer that is able to store energy at higher temperatures than conventional polymers without breaking down. In their paper published ...

How to look for a few good catalysts

July 30, 2015

Two key physical phenomena take place at the surfaces of materials: catalysis and wetting. A catalyst enhances the rate of chemical reactions; wetting refers to how liquids spread across a surface.

Findings illuminate animal evolution in protein function

July 27, 2015

Virginia Commonwealth University and University of Richmond researchers recently teamed up to explore the inner workings of cells and shed light on the 400–600 million years of evolution between humans and early animals ...

Yarn from slaughterhouse waste

July 29, 2015

ETH researchers have developed a yarn from ordinary gelatine that has good qualities similar to those of merino wool fibers. Now they are working on making the yarn even more water resistant.

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

ben77
5 / 5 (1) May 10, 2013
This paragraph in particular is very bothersome:

"Patients with diabetes typically find it difficult to comply with multiple daily insulin injections, which only partially improve long-term outcomes. Successful islet transplantation would remove the need for patients to administer insulin. While islet transplantation trials have had some success, and control of glucose levels is often improved, diabetic symptoms have returned in most patients and they have had to revert to using some insulin."

Many diabetics are no longer on MDI and instead use pumps. Compliance is not the biggest problem; managing blood sugar is incredibly complicated. Even those that do everything right still have trouble. Further, many people with islet cell transplants revert to using the same amount of insulin they were using pre-transplant and the anti rejection drugs carry a lot of risks.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.