Turning up the heat on biofuels

May 16, 2013 by Lynn Yarris
Energy Biosciences Institute researchers substantially improved the thermal stability of Trichoderma reesei EGI, an enzyme that catalyzes the hydrolysis of cellulose, through a technique called “B-factor guided mutagenesis.”

(Phys.org) —The production of biofuels from lignocellulosic biomass would benefit on several levels if carried out at temperatures between 65 and 70 degrees Celsius. Researchers with the Energy Biosciences Institute (EBI) have employed a promising technique for improving the ability of enzymes that break cellulose down into fermentable sugars to operate in this temperature range. Using this technique, they successfully engineered a high-temperature enzyme variant with greater activity and stability over the desired temperature range, and have shown that not all microbes are alike when it comes to making enzymes with improved properties.

The EBI research team, which includes Douglas Clark and Harvey Blanch, who hold joint appointments with Berkeley Lab's Physical Biosciences Division and UC Berkeley's Chemical and Biomolecular Engineering Department, and postdoctoral researcher Harshal Chokhawala, used a strategy they call "B-factor guided mutagenesis." They used it to enhance the of TrEGI, an endoglucanase enzyme produced by Trichoderma reesei, a fungus considered to be the gold standard for secreting cellulase enzymes.

"Lignocellulose using at offers several potential advantages, including higher solid loadings due to reduced viscosity, lower risk of , greater compatibility with high temperature pretreatments, enhanced and faster rates of hydrolysis," Clark says. "However, T.reesei cellulases are not very stable at temperatures above 50 degrees Celsius. We've shown that we can improve the thermal stability of T.reesei cellulases with the B-factor approach."

Like all proteins, cellulase enzymes are comprised of chains of individual amino acids that are linked together into uniquely shaped structures. Every amino acid in a given enzyme has a "B-factor" value that corresponds to the flexibility of that amino acid. The higher the B-factor value, the greater the amino acid's flexibility.

"Just like the loosest knots in a rope will unravel first, the most flexible amino acids in an enzyme are the most likely to fall out of place when the protein is thermally stressed," Clark says. "Tightening up these portions of the enzyme by mutating the and decreasing their B factor values represents one way to shore up the structure and increase the thermal stability of the protein."

In a presentation at the recent American Chemical Society national meeting in New Orleans, Clark described how he and his colleagues screened some 11,000 mutant versions of TrEGI then used a heat treatment at 50 degrees Celsius to identify some 500 variant candidates. Applying the B-factor guided mutagenesis, they engineered a TrEGI that was up to twice as active on insoluble lignocellulosic substrates as the native enzyme at temperatures ranging from 50-65 degrees Celsius. Engineered TrEGI expressed in the model fungus Neurospora crassa was able to hydrolyze lignocellulosic biomass at 60 degrees Celsius as efficiently as the native TrEGI at 50 degrees Celsius. By comparison, TrEGI mutants expressed in extracts of Escherichia coli or in the model yeast Saccharomyces cerevisiae had much lower activity at the higher temperatures.

"Our results demonstrate that the host used for recombinant cellulase production can have a profound impact on the activity and stability of the expressed enzyme, which means favorable mutagenesis results observed for one host may not carry over to another," Clark says. "So far the mutants we've produced in N. crassa exhibit very favorable properties and the results we're getting will help guide further efforts in engineering optimal performance for biofuels applications."

Explore further: Woolly mammoth genome sequencer at UWA

Related Stories

Garbage bug may help lower the cost of biofuel

Nov 29, 2012

One reason that biofuels are expensive to make is that the organisms used to ferment the biomass cannot make effective use of hemicellulose, the next most abundant cell wall component after cellulose. They convert only the ...

Recommended for you

Different watering regimes boost crop yields

2 hours ago

Watering tomato plants less frequently could improve yields in saline conditions, according to a study of the impact of water and soil salinity on vegetable crops.

Woolly mammoth genome sequencer at UWA

3 hours ago

How can a giant woolly mammoth which lived at least 200,000 years ago help to save the Tasmanian Devil from extinction? The answer lies in DNA, the carrier of genetic information.

Battling superbugs with gene-editing system

21 hours ago

In recent years, new strains of bacteria have emerged that resist even the most powerful antibiotics. Each year, these superbugs, including drug-resistant forms of tuberculosis and staphylococcus, infect ...

For legume plants, a new route from shoot to root

Sep 19, 2014

A new study shows that legume plants regulate their symbiotic relationship with soil bacteria by using cytokinins—signaling molecules— that are transmitted through the plant structure from leaves into ...

User comments : 0