Billion-year-old water could hold clues to life on Earth and Mars

May 15, 2013

A UK-Canadian team of scientists has discovered ancient pockets of water, which have been isolated deep underground for billions of years and contain abundant chemicals known to support life.

This could be some of the oldest on the planet and may even contain life. Not just that, but the similarity between the rocks that trapped it and those on Mars raises the hope that comparable life-sustaining water could lie buried beneath the 's surface.

The findings, published in Nature today, may force us to rethink which parts of our planet are fit for life, and could reveal clues about how microbes evolve in isolation.

Researchers from the universities of Manchester, Lancaster, Toronto and McMaster analysed water pouring out of from a mine 2.4 kilometres beneath Ontario, Canada.

They found that the water is rich in dissolved gases like hydrogen, and different forms – called isotopes – of such as helium, neon, and . Indeed, there is as much hydrogen in the water as around in the , many of which teem with .

The hydrogen and methane come from the interaction between the rock and water, as well as natural in the rock reacting with the water. These gases could provide energy for microbes that may not have been exposed to the sun for billions of years.

The crystalline rocks surrounding the water are thought to be around 2.7 billion years old. But no-one thought the water could be the same age, until now.

Using ground-breaking techniques developed at the University of Manchester, the researchers show that the fluid is at least 1.5 billion years old, but could be significantly older.

NERC-funded Professor Chris Ballentine of the University of Manchester, co-author of the study, and project director, says:

'We've found an interconnected fluid system in the deep Canadian crystalline basement that is billions of years old, and capable of supporting life. Our finding is of huge interest to researchers who want to understand how microbes evolve in isolation, and is central to the whole question of the origin of life, the sustainability of life, and life in extreme environments and on other planets.'

Before this finding, the only water of this age was found trapped in tiny bubbles in rock and is incapable of supporting life. But the water found in the Canadian mine pours from the rock at a rate of nearly two litres per minute. It has similar characteristics to far younger water flowing from a mine 2.8 kilometres below ground in South Africa that was previously found to support .

Ballentine and his colleagues don't yet know if the underground system in Canada sustains life, but Dr Greg Holland of Lancaster University, lead author of the study says:

'Our Canadian colleagues are trying to find out if the water contains life right now. What we can be sure of is that we have identified a way in which planets can create and preserve an environment friendly to microbial life for billions of years. This is regardless of how inhospitable the surface might be, opening up the possibility of similar environments in the subsurface of Mars.'

Professor Ballentine, based in Manchester's School of Earth, Atmospheric and Environmental Sciences, adds:

'While the questions about life on Mars raised by our work are incredibly exciting, the ground-breaking techniques we have developed at Manchester to date ancient waters also provide a way to calculate how fast methane gas is produced in ancient rock systems globally. The same new techniques can be applied to characterise old, deep groundwater that may be a safe place to inject carbon dioxide.'

David Willetts, Minister for Universities and Science, says:

'This is excellent pioneering research. It gives new insight into our planet. It has also developed new technology for carbon capture and storage projects. These have the potential for growth, job creation and our environment.'

Explore further: NASA scientists watching, studying Arctic changes this summer

More information: Deep fracture fluids isolated in the crust since the Precambrian era, by G. Holland, B. Sherwood Lollar, L. Li, G. Lacrampe-Couloume, G. F. Slater & C. J. Ballentine, in Nature, 16 May 2013. dx.doi.org/10.1038/nature12127

Related Stories

'Underground Galapagos' excites scientists

Mar 16, 2013

Diverse underground ecosystems buried deep beneath the Earth's crust may offer clues to the origins of life on Earth, several recent studies have revealed.

Microbes surviving deep inside oceanic crust

Mar 15, 2013

(Phys.org) —A new study shows for the first time that microorganisms are thriving deep within the oceanic crust under the sea floor, and hence far from light or oxygen.

Asteroid sites hint at life on Mars

Apr 16, 2012

(Phys.org) -- Craters made by asteroid impacts may be the best place to look for signs of life on other planets, a study suggests.

Moroccan desert meteorite delivers Martian secrets

Oct 11, 2012

(Phys.org)—A meteorite that landed in the Moroccan desert 14 months ago is providing more information about Mars, the planet where it originated. University of Alberta researcher Chris Herd helped in the ...

Recommended for you

NASA scientists watching, studying Arctic changes this summer

14 minutes ago

As we near the final month of summer in the Northern Hemisphere, NASA scientists are watching the annual seasonal melting of the Arctic sea ice cover. The floating, frozen cap that stretches across the Arctic Ocean shrinks ...

Severe drought is causing the western US to rise

4 hours ago

The severe drought gripping the western United States in recent years is changing the landscape well beyond localized effects of water restrictions and browning lawns. Scientists at Scripps Institution of ...

A NASA satellite double-take at Hurricane Lowell

5 hours ago

Lowell is now a large hurricane in the Eastern Pacific and NASA's Aqua and Terra satellites double-teamed it to provide infrared and radar data to scientists. Lowell strengthened into a hurricane during the ...

User comments : 0