Using 'bacteria-eaters' to prevent infections on medical implant materials

May 8, 2013
Using ‘bacteria-eaters’ to prevent infections on medical implant materials
Viruses that infect and kill bacteria — used to treat infections in the pre-antibiotic era a century ago and in the former Soviet Union today — may have a new role in preventing formation of the sticky “biofilms” responsible for infections on implanted medical devices. Credit: Ingram Publishing/Thinkstock

They're ba-ack! But in a new disease-fighting role. Viruses that infect and kill bacteria—used to treat infections in the pre-antibiotic era a century ago and in the former Soviet Union today—may have a new role in preventing formation of the sticky "biofilms" of bacteria responsible for infections on implanted medical devices. That's the topic of a report in the ACS journal Biomacromolecules.

Marek Urban and colleagues explain that bacteriophages (literally, "bacteria eaters") were first used to treat bacterial infections in the 19th century. These viruses—more than 1,000 different kinds exist—attack disease-causing bacteria. The scientists focused on use of phages to wage "microbial warfare" on the films of bacteria that form on catheters, stents and other . These infections, which often involve antibiotic-resistant bacteria, strike more than a million patients annually in the United States alone, increasing hospital bills by almost $1 billion.

Using 'bacteria-eaters' to prevent infections on medical implant materials

They describe attachment of phages to the surfaces of materials like those used in implanted medical devices, and evidence that the phages remain active, killing E. coli and . Those bacteria cause the most common hospital-acquired infections. The technology can attach phages to almost any surface, and is "a promising and effective means of not only combating antibiotic-, but also the technological platform for the development of bacteria sensing and detecting devices."

Explore further: New viruses to treat bacterial diseases

More information: Phage-Bacterium War on Polymeric Surfaces: Can Surface-Anchored Bacteriophages Eliminate Microbial Infections? Biomacromolecules, Article ASAP. DOI: 10.1021/bm400290u

These studies illustrate synthetic paths to covalently attach T1 and Φ11 bacteriophages (phages) to inert polymeric surfaces while maintaining the bacteriophage's biological activities capable of killing deadly human pathogens. The first step involved the formation of acid (COOH) groups on polyethylene (PE) and polytetrafluoroethylene (PTFE) surfaces using microwave plasma reactions in the presence of maleic anhydride, followed by covalent attachment of T1 and Φ11 species via primary amine groups. The phages effectively retain their biological activity manifested by a rapid infection with their own DNA and effective destruction of Escherichia coli and Staphylococcus aureus human pathogens. These studies show that simultaneous covalent attachment of two biologically active phages effectively destroy both bacterial colonies and eliminate biofilm formation, thus offering an opportunity for an effective combat against multibacterial colonies as well as surface detections of other pathogens.

Related Stories

New viruses to treat bacterial diseases

September 3, 2007

Viruses found in the River Cam in Cambridge, famous as a haunt of students in their punts on long, lazy summer days, could become the next generation of antibiotics, according to scientists speaking today at the Society for ...

Researchers Examine How Viruses Destroy Bacteria

November 18, 2009

Viruses are well known for attacking humans and animals, but some viruses instead attack bacteria. Texas A&M University researchers are exploring how hungry viruses, armed with transformer-like weapons, attack bacteria, which ...

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

New 'self-healing' gel makes electronics more flexible

November 25, 2015

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Atom-sized craters make a catalyst much more active

November 24, 2015

Bombarding and stretching an important industrial catalyst opens up tiny holes on its surface where atoms can attach and react, greatly increasing its activity as a promoter of chemical reactions, according to a study by ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.