University of Houston engineering researcher's theories to be tested in space

Apr 11, 2013

A University of Houston chemical and biomolecular engineering professor's theories on crystal formation will be tested aboard the International Space Station (ISS).

Professor Peter Vekilov received a grant from NASA to study how proteins in a nucleate, or form crystals. While researchers understand how crystals grow, they want to know more about how they transform from liquid to crystal.

Vekilov discovered in 2004 that before forming a crystal, proteins in a solution come together in dense droplets, where they possibly begin to unfold into the shape they have when crystalized.

His theory was proved through three years later, but there is still much about this phenomenon that is not understood. For example, crystallization processes that work well in a small volume of solution often do not work at all when scaled up to industrial-size levels of 100 or 1,000 liters – the amounts used to produce medicines, chemicals and other products.

Vekilov believes this is largely due to sheer flow, meaning the uneven flow of liquid in a system, such as a river. But he cannot effectively test his theory on earth because gravity affects sheer flow.

awarded Vekilov a grant of nearly $100,000 to further his research in space.

"We have relevant scientific questions that can only be answered by doing experiments in space. We hope to see a difference between the nucleation rate on earth and in space," Vekilov said.

His experiments will be performed by astronauts affiliated with the , most likely in 2016. Meanwhile, Vekilov and his European collaborators will build instrumentation and conduct additional research on nucleation and sheer flow to gather data and develop better models of the process.

Vekilov hopes to develop a deep understanding of sheer flow's impact on protein crystal nucleation, which can be used to design small-scale experiments that mirror the sheer flow in industrial-scale crystal production. As a result, it will be easier to scale up lab work to large volumes.

Explore further: Global scientific team 'visualizes' a new crystallization process (w/ video)

add to favorites email to friend print save as pdf

Related Stories

Suspend the crystals, and they grow better

Dec 22, 2012

The idea is so simple you wonder why no one thought of it before.Crystals growing near the bottom of a beaker are subject to convection,but it is much quieter near the top of the beaker.In that case, why not just let them ...

Theory of crystal formation complete again

Feb 19, 2013

(Phys.org)—Exactly how a crystal forms from solution is a problem that has occupied scientists for decades. Researchers at Eindhoven University of Technology (TU/e), together with researchers from Germany ...

Recommended for you

Novel technique opens door to better solar cells

Apr 14, 2014

A team of scientists, led by Assistant Professor Andrivo Rusydi from the Department of Physics at the National University of Singapore's (NUS) Faculty of Science, has successfully developed a technique to ...

Probing metal solidification nondestructively

Apr 14, 2014

(Phys.org) —Los Alamos researchers and collaborators have used nondestructive imaging techniques to study the solidification of metal alloy samples. The team used complementary methods of proton radiography ...

Glasses strong as steel: A fast way to find the best

Apr 13, 2014

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.