Ultra-thin transistors spread like butter on toast

Apr 18, 2013
Ultra-thin transistors spread like butter on toast
The March journal cover illustrates CHESS scientists' solution shearing and coating techniques. Credit: Wiley online library

Like spreading a thin layer of butter on toast, Cornell scientists have helped develop a novel process of spreading extremely thin organic transistors, and used synchrotron X-rays to watch how the films crystallize.

The experimental breakthrough for studying the structural evolution of organic transistor layers was reported by a joint team of scientists from Cornell High Energy Synchrotron Source (CHESS), including first author and CHESS staff scientist Detlef Smilgies. Other collaborators were from King Abdullah University of Science and Technology (KAUST) and Stanford University.

Their paper, "Look fast – Crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering," was featured on the March cover of the journal Physica Status Solidi – Rapid Research Letters (Vol. 7, Issue 3).

The coating procedure, called solution shearing, is like the buttering of a slice of toast, Smilgies said: The knife and toast need to be well controlled, as well as the speed that the butter is spread. Their actual materials were a solution of a semiconducting molecule called TIPS pentacene, a silicon wafer kept at a specific temperature for the substrate, and the highly polished edge of a second silicon wafer acting as the knife.

For use at CHESS beamline D1, Smilgies and Stanford graduate student Gaurav Giri created a miniature version of the full-scale coater developed by the research group of Stanford's Zhenan Bao.

To investigate the drying dynamics of TIPS pentacene under viscoelastic shear, an X-ray beam had to be focused to 20 microns, less than half the width of a human hair, and the had to be as low as 10 microseconds per frame, to capture the crystallization process. Smilgies used a high-speed X-ray pixel array detector at CHESS, and Giri supplied critical coating parameters. The overall experiment was designed by Smilgies and KAUST postdoctoral associate Ruipeng Li, a former CHESS visiting student.

The real-time solution shearing method should be scalable to future industrial roll-to-roll processing of organic electronic materials and provides a deeper understanding of the relevant coating parameters, Smilgies said.

Explore further: Can perovskites and silicon team up to boost industrial solar cell efficiencies?

More information: onlinelibrary.wiley.com/doi/10… /pssr.201206507/full

add to favorites email to friend print save as pdf

Related Stories

Nanocrystal infrared LEDs can be made cheaply

May 10, 2012

(Phys.org) -- Light-emitting diodes at infrared wavelengths are the magic behind such things as night vision and optical communications, including the streaming data that comes through Netflix. Cornell researchers have advanced ...

Well-ordered nanorods could improve LED displays

Oct 25, 2012

Scientists have utilized the imaging capabilities of the Cornell High Energy Synchrotron Source (CHESS) to help develop enhanced light-emitting diode displays using bottom-up engineering methods.

Recommended for you

New insights found in black hole collisions

20 hours ago

New research provides revelations about the most energetic event in the universe—the merging of two spinning, orbiting black holes into a much larger black hole.

X-rays probe LHC for cause of short circuit

20 hours ago

The LHC has now transitioned from powering tests to the machine checkout phase. This phase involves the full-scale tests of all systems in preparation for beam. Early last Saturday morning, during the ramp-down, ...

Swimming algae offer insights into living fluid dynamics

Mar 27, 2015

None of us would be alive if sperm cells didn't know how to swim, or if the cilia in our lungs couldn't prevent fluid buildup. But we know very little about the dynamics of so-called "living fluids," those ...

First glimpse inside a macroscopic quantum state

Mar 27, 2015

In a recent study published in Physical Review Letters, the research group led by ICREA Prof at ICFO Morgan Mitchell has detected, for the first time, entanglement among individual photon pairs in a beam ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.