Ultra-thin transistors spread like butter on toast

April 18, 2013
Ultra-thin transistors spread like butter on toast
The March journal cover illustrates CHESS scientists' solution shearing and coating techniques. Credit: Wiley online library

Like spreading a thin layer of butter on toast, Cornell scientists have helped develop a novel process of spreading extremely thin organic transistors, and used synchrotron X-rays to watch how the films crystallize.

The experimental breakthrough for studying the structural evolution of organic transistor layers was reported by a joint team of scientists from Cornell High Energy Synchrotron Source (CHESS), including first author and CHESS staff scientist Detlef Smilgies. Other collaborators were from King Abdullah University of Science and Technology (KAUST) and Stanford University.

Their paper, "Look fast – Crystallization of conjugated molecules during solution shearing probed in-situ and in real time by X-ray scattering," was featured on the March cover of the journal Physica Status Solidi – Rapid Research Letters (Vol. 7, Issue 3).

The coating procedure, called solution shearing, is like the buttering of a slice of toast, Smilgies said: The knife and toast need to be well controlled, as well as the speed that the butter is spread. Their actual materials were a solution of a semiconducting molecule called TIPS pentacene, a silicon wafer kept at a specific temperature for the substrate, and the highly polished edge of a second silicon wafer acting as the knife.

For use at CHESS beamline D1, Smilgies and Stanford graduate student Gaurav Giri created a miniature version of the full-scale coater developed by the research group of Stanford's Zhenan Bao.

To investigate the drying dynamics of TIPS pentacene under viscoelastic shear, an X-ray beam had to be focused to 20 microns, less than half the width of a human hair, and the had to be as low as 10 microseconds per frame, to capture the crystallization process. Smilgies used a high-speed X-ray pixel array detector at CHESS, and Giri supplied critical coating parameters. The overall experiment was designed by Smilgies and KAUST postdoctoral associate Ruipeng Li, a former CHESS visiting student.

The real-time solution shearing method should be scalable to future industrial roll-to-roll processing of organic electronic materials and provides a deeper understanding of the relevant coating parameters, Smilgies said.

Explore further: N.C. Wyeth's coloring technique revealed by Cornell's synchrotron as it uncovers eight decades of paint

More information: onlinelibrary.wiley.com/doi/10.1002/pssr.201206507/full

Related Stories

Nanocrystal infrared LEDs can be made cheaply

May 10, 2012

(Phys.org) -- Light-emitting diodes at infrared wavelengths are the magic behind such things as night vision and optical communications, including the streaming data that comes through Netflix. Cornell researchers have advanced ...

Well-ordered nanorods could improve LED displays

October 25, 2012

Scientists have utilized the imaging capabilities of the Cornell High Energy Synchrotron Source (CHESS) to help develop enhanced light-emitting diode displays using bottom-up engineering methods.

Recommended for you

CERN collides heavy nuclei at new record high energy

November 25, 2015

The world's most powerful accelerator, the 27 km long Large Hadron Collider (LHC) operating at CERN in Geneva established collisions between lead nuclei, this morning, at the highest energies ever. The LHC has been colliding ...

'Material universe' yields surprising new particle

November 25, 2015

An international team of researchers has predicted the existence of a new type of particle called the type-II Weyl fermion in metallic materials. When subjected to a magnetic field, the materials containing the particle act ...

Exploring the physics of a chocolate fountain

November 24, 2015

A mathematics student has worked out the secrets of how chocolate behaves in a chocolate fountain, answering the age-old question of why the falling 'curtain' of chocolate surprisingly pulls inwards rather than going straight ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.