Turtle genome analysis sheds light on the development and evolution of turtle-specific body plan

Apr 28, 2013
Pelodiscus sinensis. Credit: Wikipedia.

The Joint International Turtle Genomes Consortium, led by investigators from RIKEN, BGI, and Wellcome Trust Sanger Institute, has completed the genome sequencing of soft-shell turtle (Pelodiscus sinensis) and green sea turtle (Chelonia mydas). These achievements shed new light on the origin of turtles and applied the classical evo-devo model to explain the developmental process of their unique body plan. The findings were published online in Nature Genetics.

The evolution of turtles is an enigma in science. Their distinct body design-with a sharp beak and protective hard shell has changed very little over the past 210 million years. As the smallest species of soft-shell turtles, Chinese was once commonly sold in pet shops. is considered as the largest of all the hard-shelled and is named because of the green fat beneath its shell. Its population sizes has been drastically reduced recently and it has been listed as an endangered species.

To reveal the evolutionary history of turtles and the mechanisms underlying the development of their unique , researchers in this project sequenced and analyzed the genomes of soft-shell turtle and green sea turtle. They found the evidence that turtles are likely to be a sister group with the of and birds from whole genome phylogenetic analyses. The turtles were diverged from archosaurians approximately between 267.9 and 248.3 million years ago, which coincides with the time range of the Upper Permian to Triassic period that overlapped or followed shortly after the end of .

In the study, researchers performed the brief research on genes may be associated with the turtle-specific characteristics, and found some olfactory receptor (OR) were highly expanded in both turtles. This finding suggests that turtles have developed superior olfaction ability against a wide variety of hydrophilic substances. In addition, many genes involved in taste perception, hunger-stimulating, and energy homeostasis regulating hormone ghrelin have been uniquely lost in turtles. Researchers suggested that the loss of these genes may be related to their low-metabolic rate.

The consortium also investigated the association of embryonic gene expression profiles (GXP) and their morphological evolution pattern, based on ENSEMBL soft-shell turtle gene-set. By integrating RNA-seq technology, comparative genomics method, and mathematical statistical approaches, researchers confirmed GXP divergence during embryogenesis of soft-shell turtle and chicken indeed follows the developmental hourglass model. They also revealed that the maximal conservation stage occurred at around the vertebrate phylotypic period, rather than at later stage that show the amniote-common pattern.

To clarify the morphological specifications of turtle embryogenesis in late development, especially the formation of the carapacial ridge (CR), researchers investigated into CR-specific miRNA expression, found existence of tissue-specific miRNAs and involvement of Wnt signaling. Also they revealed the Wnt expression involved in the carapacial ridge (CR) formation of the turtle shell, researchers annotated all the Wnt genes in the two turtle genomes, identifying a total of 20 Wnt genes. Intriguingly, they discovered Wnt5a is the only Wnt gene expressed in the turtle CR region, supporting the possible co-option of limb-associated Wnt signaling in the acquisition of this turtle-specific novelty.

Zhuo Wang, Project Manager from BGI, said, "The genome-wide phylogenetic analysis of two turtles in our project, along with two crocodile genomic data additionally, makes clear the evolutionary history of turtles in diverging from other species and settles the disputes about the phylogenetic position of reptiles. The genomic analyses and embryonic gene expression profiles have been combined to reveal the fundamental evo-devo questions on turtle evolution and development. These works have been highly appreciated by the editor and reviewers. Besides the interesting story, the genomic data we released here will provide a platform for more scientists to initialize their genome-wide studies on turtles. "

Dr. Hongyan Zhang, Regional Director of BGI Tech Solutions Co., Ltd. for Japan, said, "The completed of soft-shell turtle and green sea turtle give an important hint to uncover the development and evolution mechanism of . This scientific achievement is a joint effort supported by BGI's advanced sequencing technologies and excellent bioinformatics capabilities, the profound basis research background of developmental biology from RIKEN, and other partners' great contributions. We are looking forward to having more collaboration with other scientists for better exploring the secret of life together in the near future."

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: The draft genomes of soft-shell turtle and green sea turtle yield insights into the development and evolution of the turtle specific body plan, DOI: 10.1038/ng.2615

Related Stories

Oldest sea turtle fossil unveiled in Mexico

Mar 06, 2009

Paleontologists on Thursday unveiled the oldest fossil remains of a sea turtle that lived 72 million years ago in northern Mexico, the National Institute of Anthropology and History (INAH) said.

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.