Thin clouds drove Greenland's record-breaking 2012 ice melt

Apr 03, 2013 by Mark Hobson
Greenland’s ice sheet saw a record melt in 2012

(Phys.org) —If the sheet of ice covering Greenland were to melt in its entirety tomorrow, global sea levels would rise by 24 feet.

Three million cubic kilometers of won't wash into the ocean overnight, but researchers have been tracking increasing melt rates since at least 1979. Last summer, however, the melt was so large that similar events show up in ice core records only once every 150 years or so over the last four millennia.

"In July 2012, a historically rare period of extended surface melting raised questions about the frequency and extent of such events," says Ralf Bennartz, professor of atmospheric and and scientist at the University of Wisconsin–Madison's Space Science and Engineering Center. "Of course, there is more than one cause for such widespread change. We focused our study on certain kinds of low-level ."

In a study to be published in the April 4 issue of the journal Nature, Bennartz and collaborators describe the moving parts that led to the melt, which was observed from the ICECAPS experiment funded by the National Science Foundation and run by UW–Madison and several partners atop the Greenland ice sheet.

"The July 2012 event was triggered by an influx of unusually warm air, but that was only one factor," says Dave Turner, physical scientist at the 's National Severe Storms Laboratory. "In our paper we show that low-level clouds were instrumental in pushing temperatures up above freezing."

Low-level clouds typically reflect solar energy back into space, and also tends to bounce back from the Earth's surface.

Under particular , however, clouds can be both thin enough to allow solar energy to pass through to the surface and thick enough to "trap" some of that heat even if it is turned back by snow and ice on the ground.

While low, thin is just one element within a complex interaction of wind speed, turbulence and humidity, the extra heat energy trapped close to the surface can push temperatures above freezing.

That is exactly what happened in July 2012 over large parts of the Greenland ice sheet, and similar conditions may help answer climate conundrums elsewhere.

"We know that these thin, low-level clouds occur frequently," Bennartz says. "Our results may help to explain some of the difficulties that current global climate models have in simulating the Arctic surface energy budget."

Current climate models tend to underestimate the occurrence of the clouds ICECAPS researchers found, limiting those models' ability to predict cloud response to Arctic climate change and possible feedback like spiking rates of ice melt.

By using a combination of surface-based observations, remote sensing data, and surface energy-balance models, the study not only delineates the effect of clouds on ice melting, but also shows that this type of cloud is common over both Greenland and across the Arctic, according to Bennartz.

"Above all, this study highlights the importance of continuous and detailed ground-based observations over the and elsewhere," he says. "Only such detailed observations will lead to a better understanding of the processes that drive Arctic climate. "

Explore further: NASA sees intensifying typhoon Phanfone heading toward Japan

More information: dx.doi.org/10.1038/nature12002

Related Stories

Declining sea ice to lead to cloudier Arctic: study

Mar 31, 2012

Arctic sea ice has been declining over the past several decades as global climate has warmed. In fact, sea ice has declined more quickly than many models predicted, indicating that climate models may not be correctly representing ...

Predicting Arctic sea ice loss

Jan 17, 2012

(PhysOrg.com) -- Arctic clouds are strongly tied to Arctic sea ice loss. To find the strength of those ties, a team led by scientists at Pacific Northwest National Laboratory tested a prominent climate model ...

Greenland and Antarctic ice sheet melting, rate unknown

Feb 16, 2009

The Greenland and Antarctica ice sheets are melting, but the amounts that will melt and the time it will take are still unknown, according to Richard Alley, Evan Pugh professor of geosciences, Penn State.

Recommended for you

Sculpting tropical peaks

13 hours ago

Tropical mountain ranges erode quickly, as heavy year-round rains feed raging rivers and trigger huge, fast-moving landslides. Rapid erosion produces rugged terrain, with steep rivers running through deep ...

Volcano expert comments on Japan eruption

14 hours ago

Loÿc Vanderkluysen, PhD, who recently joined Drexel as an assistant professor in Department of Biodiversity, Earth and Environmental Science in the College of Arts and Sciences, returned Friday from fieldwork ...

User comments : 0