Sweet orange's parents and mechanism for producing vitamin C revealed in its draft genome sequence

Apr 10, 2013
Genomics: Sweet success with citrus
The sweet orange is the product of a cross between pummelo and mandarin, and then a re-cross of the resulting hybrid with mandarin. Credit: iStockphoto/Thinkstock

The sweet orange, Citrus sinensis, has long dominated fruit production worldwide. Yet attempts to study this fruit's genetics and improve its desirable traits have proved difficult because it reproduces asexually and seedlings are nearly identical to the mother plant. Plant biologists had even failed to determine with certainty which fruits had been crossed to produce the sweet orange, over 2,000 years ago in China. An international research team, including members from the A*STAR Genome Institute Singapore (GIS), has now broken the deadlock by sequencing the genome of the sweet orange. The team has also revealed the fruit's parentage: pummelo, which is similar to grapefruit, and mandarin, a small and easy-peeling orange.

Xiaoan Ruan of GIS along with Qiang Xu and Ling-Ling Chen of Huazhong Agricultural University, China, and their co-workers compared the orange's genome with those of pummelo, C. grandis, and mandarin, C. reticulata, using simple sequence repeat and single-nucleotide polymorphism markers—two types of short and highly variable .

One-quarter of the sweet orange's markers matched pummelo, and three-quarters matched mandarin. The researchers also knew that the sweet orange's chloroplast—the organelle that performs photosynthesis—originated in pummelo, indicating that this fruit was the maternal parent. Plants inherit DNA only from their 'fathers', whereas they inherit DNA, chloroplasts and mitochondria from their 'mothers'. Ruan and his co-workers therefore inferred that the original breeders first crossed a female pummelo with a male mandarin, and then crossed the resulting hybrid with a male mandarin, resulting in the asexual sweet orange.

The research team also mined the sequence data to uncover the of one of orange's most important traits: production of vitamin C, a powerful antioxidant essential for connective tissue building and wound-healing. They searched for genes similar to GalUR, which produces a key enzyme in the vitamin C production pathway and found 18 copies. Other vitamin-C-rich crops, such as papaya and apple, contain between 13 and 17 copies only. From studies of when and where genes are expressed during development, the team observed that the GalUR genes are highly expressed in orange fruits. "GalUR may be the most important contributor to vitamin C accumulation in orange fruit," says Ruan.

Availability of the sweet orange genome will facilitate the study of many other important traits, including disease resistance, flavor, sugar content and fruit color, the team notes. "The findings provide new tools and approaches for future plant breeding using genetic modification or engineering for high-yield vitamin C production," says Ruan.

Explore further: Heaven scent: Finding may help restore fragrance to roses

More information: Xu, Q. et al. The draft genome of sweet orange (Citrus sinensis). Nature Genetics 45, 59–66 (2013). www.nature.com/ng/journal/v45/n1/full/ng.2472.html

Related Stories

Genetic origin of cultivated citrus determined

Jan 18, 2011

Citrus species are among the most important fruit trees in the world. Citrus has a long history of cultivation, often thought to be more than 4,000 years. Until now, however, the exact genetic origins of cultivated ...

Introducing 'Orange Bulldog'

May 13, 2008

Move over ‘Longface’, ‘Spooktacular’ and ‘Trickster’ - there’s a new face in the pumpkin patch. Welcome ‘Orange Bulldog’, a new variety of the familiar fall fruit that may soon be available ...

Recommended for you

Study on pesticides in lab rat feed causes a stir

Jul 02, 2015

French scientists published evidence Thursday of pesticide contamination of lab rat feed which they said discredited historic toxicity studies, though commentators questioned the analysis.

International consortium to study plant fertility evolution

Jul 02, 2015

Mark Johnson, associate professor of biology, has joined a consortium of seven other researchers in four European countries to develop the fullest understanding yet of how fertilization evolved in flowering plants. The research, ...

Making the biofuels process safer for microbes

Jul 02, 2015

A team of investigators at the University of Wisconsin-Madison and Michigan State University have created a process for making the work environment less toxic—literally—for the organisms that do the heavy ...

Why GM food is so hard to sell to a wary public

Jul 02, 2015

Whether commanding the attention of rock star Neil Young or apparently being supported by the former head of Greenpeace, genetically modified food is almost always in the news – and often in a negative ...

The hidden treasure in RNA-seq

Jul 01, 2015

Michael Stadler and his team at the Friedrich Miescher institute for Biomedical Research (FMI) have developed a novel computational approach to analyze RNA-seq data. By comparing intronic and exonic RNA reads, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.