Surfaces inspired by geckos can be switched between adhesive and non-adhesive states, study finds

April 4, 2013
Surfaces inspired by geckos can be switched between adhesive and non-adhesive states
Credit: Mozul

Adhesives inspired by the gecko can be made to switch on and off reversibly and repeatedly. The key design parameters for these materials are identified in a study published in Journal of the Royal Society Interface today.

use thread-like fibres on their hands and feet to stick to surfaces. Synthetic gecko-inspired adhesives rely on the same fibrillar structures. In both cases nonchemical adhesion is created by concentrating the between two bodies.

In 2007 researchers from the Leibniz Institute for New Materials, Germany created adhesive materials which could be switched on and off using differences in pressure. Now the same research group have shown precisely how to do this by adjusting the shape of the surface fibres.

Dr Paretkar and his team identified the key parameters that influence adhesion switchability; namely the fibrillar contact shape, radius, aspect ratio, orientation and the applied compressive load. They found that adding flap structures to the ends of the significantly enhanced how effectively adhesiveness could be switched on and off.

The synthetic adhesive materials are 'switched' on by pressing them against a surface and 'switched' off by increasing their pressure on the surface, which causes loss of adhesion.

The findings mean that new materials can be developed in which adhesiveness can be precisely controlled. This study was conducted using biocompatible material; if the same results can be repeated in then they could be used during delicate medical procedures in which small objects have to be moved around. These adhesive materials could also be scaled-up and used as fillers in operations such as repairing a damaged without the use of stitches.

Explore further: Scientists create gecko-inspired bandage

More information: Paretkar, D. et al. Preload responsive adhesion: effects of aspect ratio, tip shape, and alignment, Journal of the Royal Society Interface.

Related Stories

Scientists create gecko-inspired bandage

February 18, 2008

MIT researchers and colleagues have created a waterproof adhesive bandage inspired by gecko lizards that may soon join sutures and staples as a basic operating room tool for patching up surgical wounds or internal injuries.

Scientists trace gecko footprint, find clue to glue

August 25, 2011

Geckos' ability to scamper up walls with ease has long inspired scientists who study the fine keratin hairs on these creatures' footpads, believed responsible for the adhesion. Researchers at The University of Akron have ...

Copying geckos’ toes

September 5, 2011

Geckos are famous for their ability to walk up walls and scamper across ceilings. The dry-adhesive surface of geckos’ toes has inspired many attempts to copy this ability in an artificial material. Isabel Rodríguez ...

Geckos keep firm grip in wet natural habitat

April 1, 2013

( —Geckos' ability to stick to trees and leaves during rainforest downpours has fascinated scientists for decades, leading a group of University of Akron researchers to solve the mystery.

Recommended for you

A new form of real gold, almost as light as air

November 25, 2015

Researchers at ETH Zurich have created a new type of foam made of real gold. It is the lightest form ever produced of the precious metal: a thousand times lighter than its conventional form and yet it is nearly impossible ...

Getting under the skin of a medieval mystery

November 23, 2015

A simple PVC eraser has helped an international team of scientists led by bioarchaeologists at the University of York to resolve the mystery surrounding the tissue-thin parchment used by medieval scribes to produce the first ...

Moonlighting molecules: Finding new uses for old enzymes

November 27, 2015

A collaboration between the University of Cambridge and MedImmune, the global biologics research and development arm of AstraZeneca, has led researchers to identify a potentially significant new application for a well-known ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.