Surface structure controls liquid spreading

Apr 24, 2013

Researchers at Aalto University have developed a purely geometric surface structure that is able to stop and control the spreading of liquids on different types of surfaces. The structure has an undercut edge that works for all types of liquids, irrespective of their surface tension.

By using the edges, can be confined and patterned on the surface in defined forms, such as circles.

'Patterning liquids into well-controlled circles is essential in applications such as the production of lenses that begin in liquid form and are then cured. Circular-patterned edges enable the production of lenses of different sizes and different curvatures, while preserving the perfectly circular form of the lens,' says Ville Liimatainen who is a member of the micro- and nanorobotics research group.

According to the method developed by researchers, the effect of the edge structure on controlling liquids is based purely on geometry. The chemical properties of the surface are not altered in any way during the production process, so the structure can be used on many different materials, such as silicon, glass or metal.

Like an aqueduct without walls

With the help of the structure, liquid can also be guided by the edges in a desired direction on the surface. The structure can even be used to guide surface microflows. They can be used in lab-on-a-chip applications, where chemical reactions between liquids, for example, are studied in a "laboratory" built on a .

'These kinds of measurements often involve the guidance of very small fluid flows in microchannels. The channels we designed are like aqueducts without walls. In those channels, liquids with low spread even without the help of gravity,' explains Liimatainen.

'In the future, we could be able to use these types of surfaces for applications such as guiding rainwater on the outside of buildings,' he illustrates.

Controlling liquid spreading is also critical in droplet-based microfluidics, in channels using capillary action, in the screening of biological samples and in the self-assembly of microchips.

The research was conducted by Ville Liimatainen and Veikko Sariola, under the supervision of Docent Quan Zhou. It is published in the latest edition of the Advanced Materials scientific journal.

Explore further: Strongly interacting electrons turn oxide interfaces into magnetically controlled and extra-efficient solar cells

More information: onlinelibrary.wiley.com/doi/10… a.201204696/abstract

add to favorites email to friend print save as pdf

Related Stories

Repelling the drop on top

Jun 04, 2012

It would make life a lot easier if the surfaces of window panes, corrosion coatings or microfluidic systems in medical labs could keep themselves free of water and other liquids. A new simulation program can ...

A material that most liquids won't wet

Jan 16, 2013

(Phys.org)—A nanoscale coating that's at least 95 percent air repels the broadest range of liquids of any material in its class, causing them to bounce off the treated surface, according to the University ...

Recommended for you

Three-dimensional metamaterials with a natural bent

Oct 24, 2014

Metamaterials, a hot area of research today, are artificial materials engineered with resonant elements to display properties that are not found in natural materials. By organizing materials in a specific way, scientists ...

Wild molecular interactions in a new hydrogen mixture

Oct 20, 2014

Hydrogen—the most abundant element in the cosmos—responds to extremes of pressure and temperature differently. Under ambient conditions hydrogen is a gaseous two-atom molecule. As confinement pressure ...

Atomic trigger shatters mystery of how glass deforms

Oct 18, 2014

Throw a rock through a window made of silica glass, and the brittle, insulating oxide pane shatters. But whack a golf ball with a club made of metallic glass—a resilient conductor that looks like metal—and the glass not ...

User comments : 0