SN 1006: X-ray view of a thousand-year-old cosmic tapestry

Apr 17, 2013
A long Chandra observation reveals the SN 1006 supernova remnant in exquisite detail. By overlapping 10 different pointings of Chandra's field-of-view, astronomers have stitched together a cosmic tapestry of the debris field that was created when a white dwarf star exploded, sending its material hurtling into space as seen from Earth over a millennium ago. In this new Chandra image, low, medium, and higher-energy X-rays are colored red, green, and blue respectively. Since SN 1006 belongs to the class of supernovas used to measure the expansion of the Universe, the new Chandra data provide insight into these important objects. Credit: NASA/CXC/Middlebury College/F.Winkler et al.

(Phys.org) —This year, astronomers around the world have been celebrating the 50th anniversary of X-ray astronomy. Few objects better illustrate the progress of the field in the past half-century than the supernova remnant known as SN 1006.

When the object we now call SN 1006 first appeared on May 1, 1006 A.D., it was far brighter than Venus and visible during the daytime for weeks. Astronomers in China, Japan, Europe, and the Arab world all documented this spectacular sight. With the advent of the Space Age in the 1960s, scientists were able to launch instruments and detectors above Earth's atmosphere to observe the Universe in wavelengths that are blocked from the ground, including X-rays. SN 1006 was one of the faintest X-ray sources detected by the first generation of X-ray satellites.

A new image of SN 1006 from NASA's Chandra X-ray Observatory reveals this supernova remnant in exquisite detail. By overlapping ten different pointings of Chandra's field-of-view, astronomers have stitched together a cosmic tapestry of the debris field that was created when a exploded, sending its material hurtling into space. In this new Chandra image, low, medium, and higher-energy X-rays are colored red, green, and blue respectively.

The new Chandra image provides new insight into the nature of SN1006, which is the remnant of a so-called Type Ia supernova. This class of supernova is caused when a white dwarf pulls too much mass from a and explodes, or when two merge and explode. Understanding Type Ia supernovas is especially important because astronomers use observations of these explosions in distant galaxies as mileposts to mark the .

The new SN 1006 image represents the most spatially detailed map yet of the material ejected during a . By examining the different elements in the debris field - such as silicon, oxygen, and magnesium - the researchers may be able to piece together how the star looked before it exploded and the order that the layers of the star were ejected, and constrain theoretical models for the explosion.

Scientists are also able to study just how fast specific knots of material are moving away from the original explosion. The fastest knots are moving outward at almost eleven million miles per hour, while those in other areas are moving at a more leisurely seven million miles per hour. SN 1006 is located about 7,000 light years from Earth. The new Chandra image of SN 1006 contains over 8 days worth of observing time by the telescope. These results were presented at a meeting of High Energy Astrophysics Division of the American Astronomical Society in Monterey, CA.

This work involved Frank Winkler, from Middlebury College in Middlebury, VT; Satoru Katsuda from The Institute of Physical and Chemical Research (RIKEN) in Saitama, Japan; Knox Long from Space Telescope Science Institute in Baltimore, MD; Robert Petre from NASA -Goddard Space Flight Center (GSFC) in Greenbelt, MD; Stephen Reynolds from North Carolina State University in Raleigh, NC; and Brian Williams from NASA -GSFC in Greenbelt, MD.

Explore further: Comet Jacques makes a 'questionable' appearance

Related Stories

X-rays discovered from young supernova remnant

Jul 31, 2012

(Phys.org) -- Over fifty years ago, a supernova was discovered in M83, a spiral galaxy about 15 million light years from Earth. Astronomers have used NASA's Chandra X-ray Observatory to make the first detection ...

Space image: New supernova remnant lights up

Sep 13, 2011

(PhysOrg.com) -- Using the Hubble Space Telescope, astronomers are witnessing the unprecedented transition of a supernova to a supernova remnant, where light from an exploding star in a neighboring galaxy, ...

Remnant of an explosion with a powerful kick?

Feb 02, 2012

(PhysOrg.com) -- Vital clues about the devastating ends to the lives of massive stars can be found by studying the aftermath of their explosions. In its more than twelve years of science operations, NASA's ...

New supernova remnant lights up

Jun 08, 2011

(PhysOrg.com) -- In 1987, light from an exploding star in a neighboring galaxy, the Large Magellanic Cloud, reached Earth. Named Supernova 1987A, it was the closest supernova explosion witnessed in almost ...

Image: A supernova cocoon breakthrough

Jul 10, 2012

(Phys.org) -- Using observations from NASA's Chandra X-ray Observatory, researchers have obtained the first X-ray evidence of a supernova shock wave breaking through a cocoon of gas surrounding the star that ...

Recommended for you

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

Image: Our flocculent neighbour, the spiral galaxy M33

Jul 28, 2014

The spiral galaxy M33, also known as the Triangulum Galaxy, is one of our closest cosmic neighbours, just three million light-years away. Home to some forty billion stars, it is the third largest in the ...

Image: Chandra's view of the Tycho Supernova remnant

Jul 25, 2014

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

User comments : 0