Smaller pixels, smaller thermal cameras for warfighters

Apr 17, 2013
Smaller pixels, smaller thermal cameras for warfighters

The military uses long-wave infrared (LWIR) cameras as thermal imagers to detect humans at night. These cameras are usually mounted on vehicles as they are too large to be carried by a single warfighter and are too expensive for individual deployment. However, DARPA researchers recently demonstrated a new five-micron pixel LWIR camera that could make this class of camera smaller and less expensive.

Performers at DRS Technologies, Inc., working on the DARPA Advanced Wide FOV Architectures for Image Reconstruction and Exploitation (AWARE) program, have demonstrated the first LWIR that uses pixels only five microns across. This is the first IR camera with pixels about half the size of the it detects. For comparison, each pixel is about one twelfth the size of a , or about one-sixth the area of current state-of-the-art. The pixels are configured in a 1280x720 focal plane array (FPA)—a relatively high resolution for an IR camera.

The benefits of developing smaller pixels for LWIR cameras are similar to those in visual cameras, like what may be found on a cellphone. Smaller pixels mean smaller and packaging without forfeiting sensitivity, resolution or field of view. A higher density of pixels over a given area makes it easier to capture the photons from, and thus image, a target. The cumulative result is a smaller, lighter and more portable LWIR camera.

These new LWIR cameras may also be less expensive than current sensors because the cost of FPAs is proportional to chip area. FPAs are processed on a given wafer size. The more FPAs that can be printed on a single wafer, the lower the cost per FPA. Smaller pixels will therefore reduce the size, weight, power and cost. DARPA hopes that with appropriate optical adjustments, the advantages of smaller pixel FPAs will find a home in a multitude of next generation applications.

"DRS built three fully functional prototypes as part of this DARPA work," said Nibir Dhar, DARPA program manager. "The cameras have been tested for various applications, including peering through particles in the air, which would be useful for helicopters landing in brownout conditions. We have found that the image is crisp and the performance of these FPAs is comparable to those with much larger pixel sizes."

Explore further: An innovative system anticipates driver fatigue in the vehicle to prevent accidents

add to favorites email to friend print save as pdf

Related Stories

Advanced infrared capabilities enable today’s warfighter

Feb 22, 2012

By carrying a more accurate rifle scope, U.S. warfighters can increase their standoff distance when engaging enemies. Increased standoff distance can help protect warfighter lives. This is especially true when an infrared ...

Engineers build 50 gigapixel camera

Jun 20, 2012

By synchronizing 98 tiny cameras in a single device, electrical engineers from Duke University and the University of Arizona have developed a prototype camera that can create images with unprecedented detail.

Recommended for you

Student develops filter for clean water around the world

6 hours ago

Roughly 780 million people around the world have no access to clean drinking water. According to the World Health Organization (WHO), 3.4 million people die from water-related diseases every year. ETH student Jeremy Nussbaumer ...

Minimising drag to maximise results

10 hours ago

One of the most exciting parts of the Tour de France for spectators is the tactical vying for spots in the breakaway group at the front of the pack.

User comments : 0