'Skywalker': Aeronautical technology to improve maize yields

Apr 08, 2013
An image of Skywalkerrsquo--take-off.

To design a low-cost unmanned aerial vehicle which helps to select the maize varieties which are best adapted to adverse environmental conditions is the main objective of an international project led by Josep Lluís Araus, professor from the Department of Plant Biology of the UB and head of the Consolidated Research Group on Ecophysiology of Mediterranean Agriculture. Nowadays, constraints in phenotyping capability limit our ability to dissect the genetics of quantitative traits, especially those related to harvestable yield and stress tolerance. In particular, phenotyping under real environmental conditions remains the bottleneck for future breeding advances.

Maize is the most consumed cereal in Sub-Saharan Africa and Latin America, widely cultivated under varying temperatures, precipitation and soil types. Currently, about 77% of maize production in developing countries is consumed by humans. Drought and poor are the leading production constraints in most maize . Reduction in maize yield caused by climate-related stress may be increased under climate change. In this sense, development of new technological phenotyping platforms at an affordable cost is urgently needed to strengthen maize breeding and agriculture in developing countries.

The first prototype of the aerial platform was handed in February to people in charge of the South Africa Office of CIMMYT, in Harare (Zimbabwe).

To improve maize yields

Skywalker is a complex aerial phenotyping platform, a remote-controlled plane provided with an advance which do not require previous knowledge of aeromodelism. Spectral (visible and near infrared) reflectance and thermal imagery cameras were fitted to the wings; they allow evaluating crops' growth, temperature and available of large numbers of maize varieties in only a few minutes. This data will be used to improve the efficiency of maize breeding and speed up the development of drought and low nitrogen tolerant maize varieties for some of the poorest farmers in the world.

The plane ranges from 30 to 45 minutes, and can fly at over fly at over 600-meter with an average speed of 45 kilometres per hour. Take-off and landing, as well as flight plan (way, height, etc.), can be automatically programmed previously.

Skywalker: prototype's first flight in Zimbabwe

The project, founded by the International Maize and Wheat Improvement Center (CIMMYT), has the collaboration of the company Airelectronics —which designed the flight control system and installed sensors on the plane— and the Teledetection Group of the Institute for Sustainable Agriculture of CSIC, in Córdoba, responsible for selecting platform's sensors and the software to transfer and process information data.

The first prototype of the aerial platform was handed in February to people in charge of the South Africa Office of CIMMYT, in Harare (Zimbabwe), when Professor Josep Lluís Araus, Antón Hernández, president from the company Airelectronics, and Alberto Homero, technician from the group led by Pablo J. Zarco Tejada at the Institute for Sustainable Agriculture, were making a stay there. The researcher Jill Cairns, expert on maize physiology at CIMMYT, coordinated the field-test of the platform. The experts, who also visited Zimbabwe's Crop Breeding Institute (CBI), provided local technicians with theoretical and practical training to guarantee the maximum output of this new idea. It is planned to hand a second platform to Peru's National Institute for Agronomic Research (INIA).

Explore further: First drone in Nevada test program crashes in demo

add to favorites email to friend print save as pdf

Related Stories

Maize research reduces poverty in west and central Africa

Oct 28, 2009

An analysis of three and half decades of maize research in African farming communities finds big benefits. A multi-country study, in Agricultural Economics, reports the significant role international maize research plays ...

Maize hybrid looks promising for biofuel

Feb 20, 2012

Scientists at the University of Illinois at Urbana-Champaign have identified a new contender in the bioenergy race: a temperate and tropical maize hybrid. Their findings, published in GCB Bioenergy, show that the maize hybrid ...

Simulating kernel production influences maize model accuracy

Sep 21, 2007

Recently, researchers at Iowa State University discovered a way to increase the accuracy of a popular crop model. By zeroing in on early stages leading up to kernel formation, scientists believe they can help improve yield ...

Recommended for you

First drone in Nevada test program crashes in demo

12 hours ago

A drone testing program in Nevada is off to a bumpy start after the first unmanned aircraft authorized to fly without Federal Aviation Administration supervision crashed during a ceremony in Boulder City.

Fully automated: Thousands of blood samples every hour

20 hours ago

Siemens is supplying automation technology for the longest and one of the most cutting-edge sample processing lines in any clinical laboratory. The line, or automation track, 200 meters long, in Marlborough, ...

Explainer: What is 4-D printing?

20 hours ago

Additive manufacturing – or 3D printing – is 30 years old this year. Today, it's found not just in industry but in households, as the price of 3D printers has fallen below US$1,000. Knowing you can p ...

First series production vehicle with software control

21 hours ago

Siemens has unveiled the first electric series production vehicle with the central electronics and software architecture RACE. This technology, developed in the research project of the same name, replaces ...

Amputee puts limb system through its paces

23 hours ago

"Amputee Makes History with APL's Modular Prosthetic Limb" is the headline from Johns Hopkins Applied Physics Laboratory, where a team working on prosthetics observed a milestone when a double amputee showed ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.