New model gives scientists guidelines to develop 'smart' composite materials with wrinkled microstructures

Apr 25, 2013 by Jennifer Chu

Many natural composite materials have evolved to wrinkle in response to certain stimuli: The eye of the squid is lined with wavy layers of silvery reflectors that give it a silvery sheen. In the cell walls of many plants, wrinkles allow expansion without strain. Finally, the inner lining of arteries contain wrinkled lamellae that can be indicators of coronary heart disease, and can serve as markers for the condition.

Given these examples from nature, scientists say that understanding the mechanisms by which materials internally wrinkle could help in creating new, for use in chemical sensing, medical diagnostics and optical and control.

Now researchers at MIT have identified the mechanics involved in the wrinkling of thin interfacial layers within soft composite materials, and developed a model based on and geometry to predict how wrinkled an internal layer may become, given its stiffness and width. The researchers also fabricated composite materials using multi-material 3-D printing, and observed the wrinkling and instability pattern—results that were correctly predicted by their model.

Narges Kaynia, a graduate student in at MIT, says the model may serve as a blueprint for developing new with reversibly wrinkling interfaces.

"Based on the materials and geometry of the composite structure, the equations we've developed predict whether the interfacial layers will wrinkle or not, and the wrinkling pattern that might be achieved," Kaynia says. "It's very fundamental knowledge that has a lot of applications."

Kaynia collaborated with Mary Boyce, the Ford Professor of Mechanical Engineering and head of MIT's Department of Mechanical Engineering, and Yaning Li, a former MIT postdoc who is now an assistant professor of mechanical engineering at the University of New Hampshire. The group's model is detailed in the journal Advanced Engineering Materials.

This video is not supported by your browser at this time.

Layering up

In their studies, the researchers concentrated on an ideal structure they describe as a series of interfacial layers within soft layered composites: basically, relatively stiff and thin layers separating thicker layers of a soft rubbery material. This configuration is similar to the cross section seen in natural structures such as arteries and cell walls, and allows for reversible wrinkling: When compressed, the stiff, thin layers may buckle or wrinkle, depending upon the force applied; when that force is removed, the surrounding rubbery layers spring back, straightening out the wrinkled layers.

The researchers looked for ways to predict when wrinkling would occur—and the pattern of the wrinkling in such a configuration—given the stiffness of the layers, the geometry and the load applied. Li worked out equations to describe the configuration's potential for wrinkling, and found that in general, the greater the difference in stiffness between the surrounding rubbery material and the interfacial layer, the less load is required to create wrinkling. The model predicts the wavelength and amplitude that the wrinkles will take once a critical load is reached.

Printing wrinkles

To verify their analytical model, the researchers observed results from experiments. The team used a multimaterial 3-D printer to fabricate structured composites of varying stiffness and geometries. All samples retained the same stratified configuration.

"3-D printing is a fast prototyping technology," Li says. "It's very convenient for creating complicated geometries and parts with multiple materials. We can print microstructured materials and we know exactly what their properties are."

The team then placed each sample in a mechanical compression machine, and measured the load required to create wrinkles in the material and the wrinkling patterns created. In the end, their measurements closely matched their model's predictions.

Using their models, Li and Kaynia say scientists can precisely engineer biomimetic materials with interfacial layers that reversibly wrinkle on demand, much like composites found in nature. Such materials may be designed to wrinkle in response to mechanical, chemical or optical stimuli.

"For example, you could design a material for structural coloring," Kaynia says. "The composite material can be designed to react to certain environments and create wrinkles that prevent certain wavelengths from penetrating. And if you, for example, want to use it for camouflage, you would want it to be reversible too."

Yonggang Huang, a professor of civil and mechanical engineering at Northwestern University, says the group's results now make it possible for scientists to create new materials and actively control stretching and other material properties.

"The [wrinkling] of materials can generate new functionalities that have never been achieved before," Huang says. "The authors have studied this important phenomenon [and] this is the first demonstration of reversible wrinkling of interfaces in multilayered materials."

Explore further: Marine pest provides advances in maritime anti-fouling and biomedicine

Related Stories

New biomaterial more closely mimics human tissue

May 26, 2011

(PhysOrg.com) -- A new biomaterial designed for repairing damaged human tissue doesn’t wrinkle up when it is stretched. The invention from nanoengineers at the University of California, San Diego marks ...

Wrinkled surfaces could have widespread applications

Aug 01, 2012

The wrinkles on a raisin result from a simple effect: As the pulp inside dries, the skin grows stiff and buckles to accommodate its shrinking size. Now, a team of researchers at MIT has discovered a way to ...

Science gets a grip on finger wrinkles

Jan 09, 2013

Getting "pruney fingers" from soaking in the bath is an evolutionary advantage, for it helps us get a better grip on objects under water, scientists suggest.

Recommended for you

Nature inspires a greener way to make colorful plastics

4 hours ago

Long before humans figured out how to create colors, nature had already perfected the process—think stunning, bright butterfly wings of many different hues, for example. Now scientists are tapping into ...

New catalyst converts carbon dioxide to fuel

5 hours ago

Scientists from the University of Illinois at Chicago have synthesized a catalyst that improves their system for converting waste carbon dioxide into syngas, a precursor of gasoline and other energy-rich products, bringing ...

Building the ideal rest stop for protons

Jul 29, 2014

Where protons, or positive charges, decide to rest makes the difference between proceeding towards ammonia (NH3) production or not, according to scientists at Pacific Northwest National Laboratory (PNNL) and ...

Cagey material acts as alcohol factory

Jul 29, 2014

Some chemical conversions are harder than others. Refining natural gas into an easy-to-transport, easy-to-store liquid alcohol has so far been a logistic and economic challenge. But now, a new material, designed ...

User comments : 0