Scientists cage dead zebras in Africa to understand the spread of anthrax

Apr 22, 2013
Carrion produced by anthrax deaths feeds many scavengers, including jackals, hyena, vultures, marabou storks and occasionally even lions. These scavengers have evolved to be able to digest infected carrion without contracting the infection. Herbivorous animals more vulnerable to anthrax include zebra, springboks, elephants and wildebeest. Credit: Image courtesy of Steve Bellan.

Scavengers might not play as key a role in spreading anthrax through wildlife populations as previously assumed, according to findings from a small study conducted in Etosha National Park in northern Namibia.

currently spend large amounts of money and time to control outbreaks by preventing scavengers from feeding on infected carcasses.

The effort might be ill spent, according to results published in Applied and Environmental Microbiology by an international consortium of researchers led by Steven Bellan, an at The University of Texas at Austin.

Carrion produced by anthrax deaths feeds many scavengers, including jackals, , vultures, marabou storks and occasionally even lions. These scavengers have evolved to be able to digest infected carrion without contracting the infection. Herbivorous animals more vulnerable to anthrax include zebra, springboks, elephants and wildebeest.

It has been thought that scavengers change the environment in which the anthrax bacteria are living by opening herbivores' carcasses, enabling more production of spores -- the infectious life stage of the anthrax bacteria. That hypothesis is not supported by the results of the experiment. Credit: Steve Bellan.

It has been thought that scavengers change the environment in which the anthrax bacteria are living by opening herbivores' carcasses, enabling more production of spores—the infectious life stage of the anthrax bacteria.

"The hypothesis is that when a carcass is intact, the anthrax bacteria are forced into a kind of death match with putrefying bacteria from the ," said Bellan, a postdoctoral researcher in the lab of biologist Lauren Ancel Meyers. "But when the body is opened to the air, either by a scavenger or the hemorrhaging from all bodily orifices that occurs at death, the anthrax bacteria can escape that competition and more successfully produce spores."

According to this hypothesis, the scavenging also allows the carcasses' bodily fluids to leak into the soil, leading to more spores contaminating the soil. Combined, this might increase the likelihood of spread to vulnerable herbivores as they move and eat among the grasses.

To test their hypothesis, researchers found seven zebra and one wildebeest that had just died, in the wild, from anthrax infection. All of the carcasses were left where they fell, but four were protected from scavengers by electrified cage exclosures. The other four were left completely open to the elements. Credit: Steve Bellan.

In order to test the hypothesis, the researchers found seven zebra and one wildebeest that had just died in the wild from anthrax infection. All of the carcasses were left where they fell, but four were protected from scavengers by electrified cage exclosures. The other four were left completely open to the elements.

"The goal was to allow the carcasses to exist in as natural a state as possible, while preventing scavenging," Bellan said.

Samples were then taken at regular intervals to see whether there was greater anthrax spore production in the scavenged carcasses and in the nearby soil.

The researchers found that anthrax sporulation and contamination happened to a similar degree at both the scavenged and unscavenged carcasses.

"It appears that the can survive for some time in the carcass even though it may be competing with other bacteria," said Bellan. "It also appears that fluids can escape from the carcass into the soil via mechanisms other than scavenging or through hemorrhages occurring at the time of death. It looks like bloating caused by gases produced during putrefaction and maggot feeding activity are capable of independently rupturing carcass skin."

Bellan cautions that the experiment was a limited one, conducted on a small number of samples. But he said it does suggest a need for some re-evaluation of practices aimed at keeping away from anthrax .

Explore further: Researchers discover new strategy germs use to invade cells

add to favorites email to friend print save as pdf

Related Stories

Rare anthrax case diagnosed in Minnesota

Aug 10, 2011

Minnesota health officials said Tuesday they are investigating a rare case of anthrax inhalation linked to exposure to the dreaded bacteria in the natural environment.

Natural killer cells could be key to anthrax defense

Oct 27, 2011

One of the things that makes inhalational anthrax so worrisome for biodefense experts is how quickly a relatively small number of inhaled anthrax spores can turn into a lethal infection. By the time an anthrax victim realizes ...

Recommended for you

Researchers discover new strategy germs use to invade cells

16 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

16 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0