Scientists create biggest family tree of human cells

Apr 21, 2013

In a paper published today by the prestigious journal, Nature Methods, biologists at the University of Luxembourg, Tampere University of Technology and the Institute for Systems Biology in Seattle, USA, have created the biggest family tree of human cell types.

Cells are the basic unit of a . The human body consists of a vast array of highly specialized cells, such as , and neurons. In total more than 250 different cell types exist. How are the different types related to each other? Which factors are unique for each cell type? And what in the end determines the development of a certain cell?

To answer these questions, the research team designed a computer-based method that uses already existing biological data from research groups all over the world and analyses them in an entirely new way. This led to the identifications of unique factors for 166 different human cell types. These factors, or master regulators, determine the development and distinguish different cell types from each other. With this information they could map the relationship between the cell types in a family tree. These outcomes may serve as basis for the development of cell replacement therapies.

"Many diseases, such as Parkinson's disease and diabetes, or extensive burns result in the loss or altered functionality of cells", explains Dr. Merja Heinäniemi, who previously worked at the Life Sciences Research Unit and the Luxembourg Centre for Systems Biomedicine (LCSB) at the University of Luxembourg. "Ideally one would like to replace those sick or lost cells again by healthy ones to cure the patients. This study forms an important step towards the development of such therapies."

Prof. Rudi Balling, Director of the LCSB, adds: "This study illustrates the increasing importance of computer science for biology and medicine. Only with the help of computers it was possible to analyze these large amounts of to create the first large-scale analysis of cell-type specific master regulators".

Explore further: Friction harnessed by proteins helps organize cell division

Related Stories

Stem cells reverse disease in a model of Parkinson's disease

May 16, 2011

In a new study to be published in the Journal of Clinical Investigation, researchers compared the ability of cells derived from different types of human stem cell to reverse disease in a rat model of Parkinson disease and id ...

Recommended for you

For cells, internal stress leads to unique shapes

2 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

3 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

5 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

For cells, internal stress leads to unique shapes

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.