Scientists create biggest family tree of human cells

April 21, 2013

In a paper published today by the prestigious journal, Nature Methods, biologists at the University of Luxembourg, Tampere University of Technology and the Institute for Systems Biology in Seattle, USA, have created the biggest family tree of human cell types.

Cells are the basic unit of a . The human body consists of a vast array of highly specialized cells, such as , and neurons. In total more than 250 different cell types exist. How are the different types related to each other? Which factors are unique for each cell type? And what in the end determines the development of a certain cell?

To answer these questions, the research team designed a computer-based method that uses already existing biological data from research groups all over the world and analyses them in an entirely new way. This led to the identifications of unique factors for 166 different human cell types. These factors, or master regulators, determine the development and distinguish different cell types from each other. With this information they could map the relationship between the cell types in a family tree. These outcomes may serve as basis for the development of cell replacement therapies.

"Many diseases, such as Parkinson's disease and diabetes, or extensive burns result in the loss or altered functionality of cells", explains Dr. Merja Heinäniemi, who previously worked at the Life Sciences Research Unit and the Luxembourg Centre for Systems Biomedicine (LCSB) at the University of Luxembourg. "Ideally one would like to replace those sick or lost cells again by healthy ones to cure the patients. This study forms an important step towards the development of such therapies."

Prof. Rudi Balling, Director of the LCSB, adds: "This study illustrates the increasing importance of computer science for biology and medicine. Only with the help of computers it was possible to analyze these large amounts of to create the first large-scale analysis of cell-type specific master regulators".

Explore further: Stem-cell therapies for brain more complicated than thought

Related Stories

Recommended for you

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.