Scientists advance important microscopic technique for biomedical research

Apr 29, 2013
Scientists advance important microscopic technique for biomedical research
The logo becomes sharper as the pilars are positioned more precisely and the density increases. Credit: Tremani

Scientists at TU Delft have made an important advancement in a new microscopic technique that is widely used in medical research. They demonstrate what the resolution of this localisation microscopy is and how the best resolution can be achieved as quickly as possible. This week their findings are being published online in the scientific journal Nature Methods.

Fluorescence microscopy is an important technique in . This method makes it possible to deduce information, for example about the functioning of , from the light emitted by certain fluorescent in cells. used to produce images with ranging from 200 to 300 nanometres. In recent years, however, scientists have employed a trick that allows you to view images around ten times sharper: localisation microscopy. This technique makes it possible to obtain much better and much more informative images of the interior of the cell.

Localisation microscopy involves analysing the light of single molecules in several places. This is repeated for many molecules in . When the data from these individual molecules is combined, a much clearer picture emerges.

One number for the resolution

"Everyone started using the new technique. In practice, however, these great localisation-microscopy resolutions of 20 to 30 nanometres could not be obtained quickly", notes researcher Dr Bernd Rieger of TU Delft. "The emission of fluorescent light by the molecules is a statistical process that is thus partly determined by chance. One consequence is the need for highly complicated calculations. Fellow researcher Dr Sjoerd Stallinga, PhD candidate Robert Nieuwenhuizen and I wondered what would be really a feasible with this technique.

The resolution achieved depends upon the uncertainty in the location of labelled fluorescent molecules, the density of the applied labels and the shape of the sample under investigation. Nieuwenhuizen explains, "Until recently, there was no practical, integrated method for considering all of these factors. Now we are able to do that. We can derive a single number directly from the images, which indicates the resolution achieved. We do this using a statistical-mathematical analysis known as Fourier Ring Correlation".

Recipe

"We also provide a kind of recipe for localisation microscopy", Stallinga adds. "Our approach makes it possible to compare the resolution of images taken with different nanoscopic methods. It also makes it possible to optimise and rank several methods, in addition to determining when sufficient data have been obtained to produce a good image. In this way, we show how to achieve the best resolution as quickly as possible".

For this publication, the TU Delft scientists collaborated with the NKI, the German Max Planck Institute, the University of New Mexico and the University of Massachusetts. The study received financial support from STW.

The researchers published their findings in the online edition of Nature Methods on 28 April.

Explore further: Sensitive detection method may help impede illicit nuclear trafficking

More information: Measuring resolution in optical nanoscopy, www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.2448.html

add to favorites email to friend print save as pdf

Related Stories

Heart-shaped nano beads

Feb 14, 2013

(Phys.org)—Biotechnologists at the National Physical Laboratory (NPL) specialise in the measurement of biomolecules in solution, at interfaces and in cells and tissues. They examine the benefits and limitations ...

A closer look at cells

Jul 27, 2011

Many substances and nutrients are exchanged across the cell membrane. EPFL scientists have developed a method to observe these exchanges, by taking a highly accurate count of the number of proteins found there. ...

Helium raises resolution of whole cell imaging

Oct 03, 2011

The ability to obtain an accurate three-dimensional image of an intact cell is critical for unraveling the mysteries of cellular structure and function. However, for many years, tiny structures buried deep inside cells have ...

Recommended for you

How to test the twin paradox without using a spaceship

1 hour ago

Forget about anti-ageing creams and hair treatments. If you want to stay young, get a fast spaceship. That is what Einstein's Theory of Relativity predicted a century ago, and it is commonly known as "twin ...

Device turns flat surface into spherical antenna

Apr 14, 2014

By depositing an array of tiny, metallic, U-shaped structures onto a dielectric material, a team of researchers in China has created a new artificial surface that can bend and focus electromagnetic waves ...

User comments : 0

More news stories

Glasses strong as steel: A fast way to find the best

Scientists at Yale University have devised a dramatically faster way of identifying and characterizing complex alloys known as bulk metallic glasses (BMGs), a versatile type of pliable glass that's stronger than steel.

Floating nuclear plants could ride out tsunamis

When an earthquake and tsunami struck the Fukushima Daiichi nuclear plant complex in 2011, neither the quake nor the inundation caused the ensuing contamination. Rather, it was the aftereffects—specifically, ...

Unlocking secrets of new solar material

(Phys.org) —A new solar material that has the same crystal structure as a mineral first found in the Ural Mountains in 1839 is shooting up the efficiency charts faster than almost anything researchers have ...