New study shows how Salmonella colonises the gut

Apr 22, 2013

(Phys.org) —Salmonella is a major cause of human diarrhoeal infections and is frequently acquired from chickens, pigs and cattle, or their products. Around 94 million such infections occur in people worldwide each year, with approximately 50,000 cases in the UK per annum.

In a BBSRC-funded collaboration between the University of Cambridge's Department of Veterinary Medicine, the University of Edinburgh's Roslin Institute and the Wellcome Trust Sanger Institute, scientists have studied how Salmonella colonises the intestines of food-producing . This is relevant both to the welfare of the animal hosts and to contamination of the food chain and farm environment.

To unravel how Salmonella persists in , the scientists studied the role of thousands of its genes. Using a novel DNA-sequencing method the team screened 10,000 mutants of Salmonella for their ability to colonise the guts of chickens, pigs and cattle. This was achieved by using a based on high-throughput DNA sequencing which enabled the screening of 475 mutants of the bacteria per single animal. In the process, they assigned roles in infection to over 2700 Salmonella genes in each of the farm animal hosts. This has yielded roles for over half the of the bacterium and is by far the most comprehensive survey for any pathogen in its natural hosts to date.

Professor Duncan Maskell at the University of Cambridge said, "We found that hundreds of genes are important for colonisation; this provides vital new data for the design of strategies to control Salmonella in animals and reduce transmission to humans. Our data indicate that contains a core set of genes that is important when it infects all three hosts, but that there are smaller sets of genes that are required for infection of each individual ."

Professor Mark Stevens at The Roslin Institute added, "We are always trying to develop new ways of reducing the number of animals used in experiments. The methods we applied allowed us to survey the fate of hundreds of bacterial mutants simultaneously in one animal, rather than us having to test them one-by-one. This represents a significant advance in the study of microbial diseases, and can be applied to other pathogens and host animals."

The team now plans to use the data it has collected to design vaccines or treatments to reduce the burden of salmonellosis in animals and humans.

Explore further: Bacteria 'hotwire their genes' to fix a faulty motor

add to favorites email to friend print save as pdf

Related Stories

Arctic evolution leads to salmonella vaccine

Mar 05, 2012

Bacteria harvested from the frigid waters of the Arctic could be the key to a new type of temperature-sensitive vaccine. University of Victoria microbiology researcher Dr. Francis Nano has received Genome BC Proof-of-Concept ...

Growing concern over drugs fed to animals

Sep 19, 2011

Drugs fed to animals to promote growth and prevent diseases may play a key role in the emergence of antibiotic resistant bacteria, microbiologists said Sunday.

Recommended for you

Malaria transmission linked to mosquitoes' sexual biology

21 hours ago

Sexual biology may be the key to uncovering why Anopheles mosquitoes are unique in their ability to transmit malaria to humans, according to researchers at Harvard T. H. Chan School of Public Health and University of Per ...

Intermediary neuron acts as synaptic cloaking device

23 hours ago

Neuroscientists believe that the connectome, a map of each and every connection between the millions of neurons in the brain, will provide a blueprint that will allow them to link brain anatomy to brain function. ...

Skeleton of cells controls cell multiplication

23 hours ago

A research team from Instituto Gulbenkian de Ciencia (IGC; Portugal), led by Florence Janody, in collaboration with Nicolas Tapon from London Research Institute (LRI; UK), discovered that the cell's skeleton ...

New study shows safer methods for stem cell culturing

Feb 25, 2015

A new study led by researchers at The Scripps Research Institute (TSRI) and the University of California (UC), San Diego School of Medicine shows that certain stem cell culture methods are associated with increased DNA mutations. ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.