New study shows how Salmonella colonises the gut

April 22, 2013

(Phys.org) —Salmonella is a major cause of human diarrhoeal infections and is frequently acquired from chickens, pigs and cattle, or their products. Around 94 million such infections occur in people worldwide each year, with approximately 50,000 cases in the UK per annum.

In a BBSRC-funded collaboration between the University of Cambridge's Department of Veterinary Medicine, the University of Edinburgh's Roslin Institute and the Wellcome Trust Sanger Institute, scientists have studied how Salmonella colonises the intestines of food-producing . This is relevant both to the welfare of the animal hosts and to contamination of the food chain and farm environment.

To unravel how Salmonella persists in , the scientists studied the role of thousands of its genes. Using a novel DNA-sequencing method the team screened 10,000 mutants of Salmonella for their ability to colonise the guts of chickens, pigs and cattle. This was achieved by using a based on high-throughput DNA sequencing which enabled the screening of 475 mutants of the bacteria per single animal. In the process, they assigned roles in infection to over 2700 Salmonella genes in each of the farm animal hosts. This has yielded roles for over half the of the bacterium and is by far the most comprehensive survey for any pathogen in its natural hosts to date.

Professor Duncan Maskell at the University of Cambridge said, "We found that hundreds of genes are important for colonisation; this provides vital new data for the design of strategies to control Salmonella in animals and reduce transmission to humans. Our data indicate that contains a core set of genes that is important when it infects all three hosts, but that there are smaller sets of genes that are required for infection of each individual ."

Professor Mark Stevens at The Roslin Institute added, "We are always trying to develop new ways of reducing the number of animals used in experiments. The methods we applied allowed us to survey the fate of hundreds of bacterial mutants simultaneously in one animal, rather than us having to test them one-by-one. This represents a significant advance in the study of microbial diseases, and can be applied to other pathogens and host animals."

The team now plans to use the data it has collected to design vaccines or treatments to reduce the burden of salmonellosis in animals and humans.

Explore further: Prebiotics -- the key to fewer food poisoning stomach upsets -- and healthy farm animals

Related Stories

Arctic evolution leads to salmonella vaccine

March 5, 2012

Bacteria harvested from the frigid waters of the Arctic could be the key to a new type of temperature-sensitive vaccine. University of Victoria microbiology researcher Dr. Francis Nano has received Genome BC Proof-of-Concept ...

Recommended for you

How bees naturally vaccinate their babies

July 31, 2015

When it comes to vaccinating their babies, bees don't have a choice—they naturally immunize their offspring against specific diseases found in their environments. And now for the first time, scientists have discovered how ...

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.