New study shows how Salmonella colonises the gut

Apr 22, 2013

(Phys.org) —Salmonella is a major cause of human diarrhoeal infections and is frequently acquired from chickens, pigs and cattle, or their products. Around 94 million such infections occur in people worldwide each year, with approximately 50,000 cases in the UK per annum.

In a BBSRC-funded collaboration between the University of Cambridge's Department of Veterinary Medicine, the University of Edinburgh's Roslin Institute and the Wellcome Trust Sanger Institute, scientists have studied how Salmonella colonises the intestines of food-producing . This is relevant both to the welfare of the animal hosts and to contamination of the food chain and farm environment.

To unravel how Salmonella persists in , the scientists studied the role of thousands of its genes. Using a novel DNA-sequencing method the team screened 10,000 mutants of Salmonella for their ability to colonise the guts of chickens, pigs and cattle. This was achieved by using a based on high-throughput DNA sequencing which enabled the screening of 475 mutants of the bacteria per single animal. In the process, they assigned roles in infection to over 2700 Salmonella genes in each of the farm animal hosts. This has yielded roles for over half the of the bacterium and is by far the most comprehensive survey for any pathogen in its natural hosts to date.

Professor Duncan Maskell at the University of Cambridge said, "We found that hundreds of genes are important for colonisation; this provides vital new data for the design of strategies to control Salmonella in animals and reduce transmission to humans. Our data indicate that contains a core set of genes that is important when it infects all three hosts, but that there are smaller sets of genes that are required for infection of each individual ."

Professor Mark Stevens at The Roslin Institute added, "We are always trying to develop new ways of reducing the number of animals used in experiments. The methods we applied allowed us to survey the fate of hundreds of bacterial mutants simultaneously in one animal, rather than us having to test them one-by-one. This represents a significant advance in the study of microbial diseases, and can be applied to other pathogens and host animals."

The team now plans to use the data it has collected to design vaccines or treatments to reduce the burden of salmonellosis in animals and humans.

Explore further: Life's extremists may be an untapped source of antibacterial drugs

add to favorites email to friend print save as pdf

Related Stories

Arctic evolution leads to salmonella vaccine

Mar 05, 2012

Bacteria harvested from the frigid waters of the Arctic could be the key to a new type of temperature-sensitive vaccine. University of Victoria microbiology researcher Dr. Francis Nano has received Genome BC Proof-of-Concept ...

Growing concern over drugs fed to animals

Sep 19, 2011

Drugs fed to animals to promote growth and prevent diseases may play a key role in the emergence of antibiotic resistant bacteria, microbiologists said Sunday.

Recommended for you

Cohesin molecule safeguards cell division

Nov 21, 2014

The cohesin molecule ensures the proper distribution of DNA during cell division. Scientists at the Research Institute of Molecular Pathology (IMP) in Vienna can now prove the concept of its carabiner-like ...

Nail stem cells prove more versatile than press ons

Nov 21, 2014

There are plenty of body parts that don't grow back when you lose them. Nails are an exception, and a new study published in the Proceedings of the National Academy of Sciences (PNAS) reveals some of the r ...

Scientists develop 3-D model of regulator protein bax

Nov 21, 2014

Scientists at Freie Universität Berlin, the University of Tubingen, and the Swiss Federal Institute of Technology in Zurich (ETH) provide a new 3D model of the protein Bax, a key regulator of cell death. When active, Bax ...

Researchers unwind the mysteries of the cellular clock

Nov 20, 2014

Human existence is basically circadian. Most of us wake in the morning, sleep in the evening, and eat in between. Body temperature, metabolism, and hormone levels all fluctuate throughout the day, and it ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.