Rigid growth matrix: A key to success of cardiac tissue engineering

Apr 15, 2013

A new study by researchers at UCLA suggests that the elasticity of the physical matrix used for growing heart muscle cells outside of the body may be critical to the success of cardiac tissue engineering. The results were published in the journal Science and Technology of Advanced Materials this week.

Adult heart muscle is the least regenerative of human tissues. But embryonic cardiomyocytes () can multiply, with providing an endless reservoir for new cardiac tissue. A new study by Nakano, Gimzewski and their co-workers at the University of California, Los Angeles (UCLA) suggests that the elasticity of the physical matrix used for growing cardiomyocytes outside of the body may be critical to the success of cardiac tissue engineering efforts.

Published in the journal Science and Technology of Advanced Materials, the study found that a stiff or rigid environment not only enhances the function of existing cardiomyocytes (as has previously been shown), but also promotes the generation of cardiomyocytes from embryonic stem (ES) cells. It may therefor be possible to grow new from stem cells by manipulating the stiffness of the medium they're grown in.

In living organisms, a type of called (MSCs) are extremely sensitive to the elasticity of different materials, when cultured outside the body. For example, soft growing matrices that mimic brain tissue promote the differentiation of MSCs into neurons, while rigid matrices that resemble bone tissue promote the differentiation of MSCs into bone cells.

In this study, the UCLA team examined the role of matrix elasticity on cardiac muscle development using mouse and human embryonic stem cells, which were grown on different substrates of a silicon-based organic polymer that varied in stiffness. The team found that rigid matrices promoted the generation of more cardiomyocytes cells from ES cells. In addition, ES-derived cardiomyocytes displayed functional maturity and synchronization of beating when cultured with cardiomyocytes harvested from a developing embryo.

The team recommends further research on how biophysical cues determine the fate of embryonic stem cells in order to improve cardiac tissue culture methods for regenerative medicine purposes.

Explore further: Efficient synthesis of polyurethane raw materials from carbon dioxide

More information: Arshi, A. et al. Rigid microenvironments promote cardiac differentiation of mouse and human embryonic stem cells, Science and Technology of Advanced Materials 14 (2013) 025003. doi:10.1088/1468-6996/14/2/025003

add to favorites email to friend print save as pdf

Related Stories

Process for expansion and division of heart cells identified

Feb 17, 2009

Researchers at the Gladstone Institute of Cardiovascular Disease (GICD) and the University of California, San Francisco have unraveled a complex signaling process that reveals how different types of cells interact to create ...

The birth of new cardiac cells

Dec 05, 2012

Recent research has shown that there are new cells that develop in the heart, but how these cardiac cells are born and how frequently they are generated remains unclear. In new research from Brigham and Women's Hospital (BWH), ...

Recommended for you

Electronic switches on the molecular scale

13 hours ago

A molecular electronic switch is a junction created from individual molecules that can alternate between two or more stable states, making the switch act as a conductor or an insulator. These switches show ...

Mimicking photosynthesis with man-made leaves

13 hours ago

Scientists have long been trying to emulate the way in which plants harvest energy from the sun through photosynthesis. Plants are able to absorb photons from even weak sunlight using light antennae made ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.