Same protein that fires up cancer-promoting Erk also blocks its activation

Apr 19, 2013

A protein which is intimately involved in cancer-promoting cell signaling also keeps a key component of the signaling pathway tied down and inactive, a team led by scientists from The University of Texas MD Anderson Cancer Center reports this week in Nature Structural Molecular Biology.

Shc, pronounced "schick," plays a key role in activating signals which lead to (and cancer) when cells are stimulated, however it unexpectedly turns out to be a tumor-suppressor, keeping Erk under wraps when a cell is less active, said senior author John Ladbury, Ph.D., professor in MD Anderson's Department of Biochemistry and Molecular Biology.

"Shc is a checkpoint to prevent out of control cell growth, binding to Erk when a cell is not being stimulated by ," Ladbury said. "Otherwise, the lower-level background signaling that's always present in a cell would be uncontrolled."

Keeping Erk in check while the cell idles

Overexpression of Erk occurs in many , including ovarian and prostate cancer and , so of its activity is important.

In the absence of external stimulation by growth factors, cells remain active but lower levels of cell signaling occur, which Ladbury compares to a car idling, ready to roll. Under these conditions are in place to prevent the cell kicking into gear. Shc turns out to be one of these controllers.

"We're essentially looking at the cell in a resting, but ready, state," Ladbury said. "I would argue that's probably more like a cell behaves in tissue, it's not normally getting a slug of growth factors as is often the way when we investigate signaling in experiments in the lab. There's still a lot going on in the cell, basically background activity."

These findings point to a number of therapeutic possibilities, including the measurement of Shc as a diagnostic tool and of finding small that block growth-factor signaling to Shc, keeping it bound to Erk, Ladbury noted.

Growth factors provide double boost for Erk

When the appropriate growth factor receptor is stimulated Erk is activated in the MAP Kinase pathway. It dives into the cell nucleus and turns on a variety of genes, actions that contribute to cancer proliferation, blood vessel production and metastasis when signaling is out of control.

When receptor tyrosine kinases on the cell surface connect with growth factors, they normally send a signal via Shc that sets off a chain of actions leading to Erk activation. Ladbury and colleagues looked at Shc's connections to epidermal growth factor receptor (EGFR) signaling.

The team found in mammalian cell lines that:

  • Under non-stimulated conditions Shc binds to Erk in the cell cytoplasm at binding sites that are unique on both proteins.
  • Stimulation via EGFR reduces this connection, but not by competing with Shc at the Shc-Erk binding site.
  • Instead, on stimulation from outside the cells, EGFR adds phosphate groups to itself at specific sites. One of these forms a binding for Shc, which distorts the protein's shape, making it impossible for Erk to bind.
  • Overexpression of Shc decreases the amount of activated Erk, because Shc mops up free Erk molecules.
  • Depleting Shc expression with short hairpin RNA resulted in higher levels of activated Erk.
  • When separated from Shc, Erk moves into the nucleus and activates genes even when the cell is not receiving a stimulus. Thus without the controlling influence of Shc, Erk can run riot in the cell giving rise to unrestrained cell reproduction.
Shc-Erk connection confirmed

Ladbury and colleagues then tested their results in the C.Elegans, a worm model frequently employed in biological research. Both Shc and Erk are greatly similar between humans and the worms.

Experiments showed that Shc blocks Erk function by sequestering it away from the Ras-Raf-Mek MAPK pathway in the worms. Without the Shc-Erk connection, the MAPK pathway is activated, causing excessive Erk activation.

EGFR stimulation not only sets off the normal activation of Erk via Shc and the MAPK pathway, Ladbury said, but also frees Erk for greater availability for activation by breaking the tie to Shc.

Explore further: Fighting bacteria—with viruses

Related Stories

Combination therapies for drug-resistant cancers

Oct 10, 2011

Some cancers can be effectively treated with drugs inhibiting proteins known as receptor tyrosine kinases, but not those cancers caused by mutations in the KRAS gene. A team of researchers led by Jeffrey Engelman, at Massachusetts ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0