Nitrogen has key role in estimating CO2 emissions from land use change

Apr 19, 2013

A new global-scale modeling study that takes into account nitrogen – a key nutrient for plants – estimates that carbon emissions from human activities on land were 40 percent higher in the 1990s than in studies that did not account for nitrogen.

Researchers at the University of Illinois at Urbana-Champaign and the University of Bristol Cabot Institute published their findings in the journal Global Change Biology. The findings will be a part of the upcoming Fifth Assessment Report from the .

"One nutrient can make a huge impact on the carbon cycle and net emissions of the carbon dioxide," said study leader Atul Jain, a professor of atmospheric sciences at the U. of I. "We know that climate is changing, but the question is how much? To understand that, we have to understand interactive feedback processes – the interactions of climate with the land, but also interactions between nutrients within the land."

The carbon cycle is a balance of carbon emissions into the atmosphere and absorption by oceans and terrestrial ecosystems. Carbon is absorbed by plants during photosynthesis and by the oceans through sea-air gas exchange. On the other side of the cycle, carbon is released by and by changes in land use – deforestation to expand , for example. While are well-known, there are large uncertainties in estimated emissions from land use change.

"When humans disturb the land, the carbon stored in the plants and the soil goes back into the atmosphere," Jain said. "But when plants regrow, they absorb carbon through photosynthesis. Absorption or release of carbon can be enhanced or dampened depending on environmental conditions, such as climate and ."

Nitrogen is an essential mineral nutrient for plants, which means that plants need it to grow and thrive. In nontropical regions especially, plant regrowth – and therefore carbon assimilation by plants – is limited by nitrogen availability.

"Most models used to estimate global land use change emissions to date do not have the capability to model this nitrogen limitation on plant regrowth following land use change," said Prasanth Meiyappan, a graduate student who is a co-author of the study. "This means, for example, they overestimate regrowth and they underestimate net emissions from the harvest-regrowth cycle in temperate forest plantations."

Jain's team, in collaboration with Joanna House, a researcher at the University of Bristol's Cabot Institute, concluded that by not accounting for nitrogen as a limiting nutrient for plant growth, other models might have underestimated the 1990s from land use change by 70 percent in nontropical regions and by 40 percent globally.

"This gross underestimation has great implications for international policy," House said. "If emissions from land-use change are higher than we thought, or the land sink (regrowth) is more limited, then future emissions cuts would have to be deeper to meet the same mitigation targets."

Next, the researchers are investigating the impacts of other nutrients, such as phosphorus, on the . They also are estimating the carbon stored in the soil, and how much is released or absorbed when the soil is perturbed.

"Soil has great potential to sequester ," Jain said. "The question is, how much that's being released is being sequestered in the soil? We have to understand how human behavior is changing our environment and interacting with our ecosystems."

Explore further: Conservation scientists asking wrong questions on climate change impacts on wildlife

More information: The paper, "CO2 emissions from land-use change affected more by nitrogen cycle, than by the choice of land-cover data," is available online at onlinelibrary.wiley.com/doi/10.1111/gcb.12207/full

add to favorites email to friend print save as pdf

Related Stories

Global warming: New study challenges carbon benchmark

Sep 28, 2011

The ability of forests, plants and soil to suck carbon dioxide (CO2) from the air has been under-estimated, according to a study on Wednesday that challenges a benchmark for calculating the greenhouse-gas ...

Forests absorb one third our fossil fuel emissions

Jul 15, 2011

The world's established forests remove 2.4 billion tonnes of carbon per year from the atmosphere – equivalent to one third of current annual fossil fuel emissions – according to new research published in the journal ...

Recommended for you

Big data confirms climate extremes are here to stay

13 hours ago

In a paper published online today in the journal Scientific Reports, published by Nature, Northeastern researchers Evan Kodra and Auroop Ganguly found that while global temperature is indeed increasing, so too is the variab ...

Peru's carbon quantified: Economic and conservation boon

13 hours ago

Today scientists unveiled the first high-resolution map of the carbon stocks stored on land throughout the entire country of Perú. The new and improved methodology used to make the map marks a sea change ...

How might climate change affect our food supply?

14 hours ago

It's no easy question to answer, but prudence demands that we try. Thus, Microsoft and the United States Department of Agriculture (USDA) have teamed up to tackle "food resilience," one of several themes ...

Groundwater is safe in potential N.Y. fracking area

14 hours ago

Two Cornell hydrologists have completed a thorough groundwater examination of drinking water in a potential hydraulic fracturing area in New York's Southern Tier. They determined that drinking water in potable ...

User comments : 0