New nanotechnique to deliver life-saving drugs to the brain

April 17, 2013 by Marlen Mursuli
FIU professor Madhavan Nair works with magnets to draw therapy to a specific site.

(Phys.org) —In a study published in today's issue of Nature Communications, researchers from FIU's Herbert Wertheim College of Medicine describe a revolutionary technique they have developed that can deliver and fully release the anti-HIV drug AZTTP into the brain.

Madhavan Nair, professor and chair, and Sakhrat Khizroev, professor and vice chair of the HWCOM's Department of Immunology, used magneto-electric nanoparticles (MENs) to cross the blood-brain barrier and send a significantly increased level of AZTTP—up to 97 percent more —to HIV-infected cells.

For years, the blood-brain barrier has stumped scientists and doctors who work with neurological diseases. A natural filter that allows very few substances to pass through to the brain, the blood-brain barrier keeps most medicines from reaching the brain. Currently, more than 99 percent of the used to treat HIV, such as AZTTP, are deposited in the liver, lungs and other organs before they reach the brain.

"This allows a virus, such as AIDS, to lurk unchecked," said Nair, an HIV/immunology researcher.

New technique to deliver life-saving drugs to the brain
In laboratory models, a new technique developed by researchers at FIU uses magneto-electric nanoparticles to deliver a significantly higher level of the anti-HIV drug AZTTP to the brain.

The patent-pending technique developed by FIU binds the drug to a MEN inserted into a monocyte/macrophage cell, which is then injected into the body and drawn to the brain. Once it has reached the , a low energy triggers a release of the drug, which is then guided to its target with magnetoelectricity. In lab experiments, nearly all of the therapy reached its intended target. It will soon enter the next phase of testing.

Potentially, this method of delivery could help other patients who suffer from such as Alzheimer's, Parkinson's, epilepsy, , meningitis and chronic pain. It could also be applicable to diseases such as cancer.

"We see this as a multifunctional therapy," said Khizroev, who is an electrical engineer and physicist by training.

Multi-disciplinary efforts that combine principles of those fields with immunology enabled the project to move forward.

"The success of our nanotechnology is derived from the fact that nature likes simplicity," Khizroev said.

Explore further: New method delivers Alzheimer's drug to the brain

More information: www.nature.com/ncomms/journal/v4/n4/full/ncomms2717.html

Related Stories

New method delivers Alzheimer's drug to the brain

March 21, 2011

(PhysOrg.com) -- Oxford University scientists have developed a new method for delivering complex drugs directly to the brain, a necessary step for treating diseases like Alzheimer’s, Parkinson’s, Motor Neuron Disease ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.