New nanotechnique to deliver life-saving drugs to the brain

Apr 17, 2013 by Marlen Mursuli
FIU professor Madhavan Nair works with magnets to draw therapy to a specific site.

(Phys.org) —In a study published in today's issue of Nature Communications, researchers from FIU's Herbert Wertheim College of Medicine describe a revolutionary technique they have developed that can deliver and fully release the anti-HIV drug AZTTP into the brain.

Madhavan Nair, professor and chair, and Sakhrat Khizroev, professor and vice chair of the HWCOM's Department of Immunology, used magneto-electric nanoparticles (MENs) to cross the blood-brain barrier and send a significantly increased level of AZTTP—up to 97 percent more —to HIV-infected cells.

For years, the blood-brain barrier has stumped scientists and doctors who work with neurological diseases. A natural filter that allows very few substances to pass through to the brain, the blood-brain barrier keeps most medicines from reaching the brain. Currently, more than 99 percent of the used to treat HIV, such as AZTTP, are deposited in the liver, lungs and other organs before they reach the brain.

"This allows a virus, such as AIDS, to lurk unchecked," said Nair, an HIV/immunology researcher.

New technique to deliver life-saving drugs to the brain
In laboratory models, a new technique developed by researchers at FIU uses magneto-electric nanoparticles to deliver a significantly higher level of the anti-HIV drug AZTTP to the brain.

The patent-pending technique developed by FIU binds the drug to a MEN inserted into a monocyte/macrophage cell, which is then injected into the body and drawn to the brain. Once it has reached the , a low energy triggers a release of the drug, which is then guided to its target with magnetoelectricity. In lab experiments, nearly all of the therapy reached its intended target. It will soon enter the next phase of testing.

Potentially, this method of delivery could help other patients who suffer from such as Alzheimer's, Parkinson's, epilepsy, , meningitis and chronic pain. It could also be applicable to diseases such as cancer.

"We see this as a multifunctional therapy," said Khizroev, who is an electrical engineer and physicist by training.

Multi-disciplinary efforts that combine principles of those fields with immunology enabled the project to move forward.

"The success of our nanotechnology is derived from the fact that nature likes simplicity," Khizroev said.

Explore further: New cancer-hunting 'nano-robots' to seek and destroy tumours

More information: www.nature.com/ncomms/journal/… full/ncomms2717.html

Related Stories

HIV disrupts blood-brain barrier

Jun 28, 2011

HIV weakens the blood-brain barrier — a network of blood vessels that keeps potentially harmful chemicals and toxins out of the brain — by overtaking a small group of supporting brain cells, according ...

New method delivers Alzheimer's drug to the brain

Mar 21, 2011

(PhysOrg.com) -- Oxford University scientists have developed a new method for delivering complex drugs directly to the brain, a necessary step for treating diseases like Alzheimer’s, Parkinson’s, ...

Hope for patients with HIV-associated cognitive impairment

Aug 14, 2012

Current drug therapy for patients with HIV is unable to control the complete replication of the virus in the brain. The drugs therefore do not have any effect against the complications associated with neurocognitive impairment ...

Recommended for you

Introducing the multi-tasking nanoparticle

Aug 26, 2014

Kit Lam and colleagues from UC Davis and other institutions have created dynamic nanoparticles (NPs) that could provide an arsenal of applications to diagnose and treat cancer. Built on an easy-to-make polymer, these particles ...

Tissue regeneration using anti-inflammatory nanomolecules

Aug 22, 2014

Anyone who has suffered an injury can probably remember the after-effects, including pain, swelling or redness. These are signs that the body is fighting back against the injury. When tissue in the body is damaged, biological ...

Cut flowers last longer with silver nanotechnology

Aug 21, 2014

Once cut and dunked in a vase of water, flowers are susceptible to bacterial growth that shortens the length of time one has to enjoy the blooms. A few silver nanoparticles sprinkled into the water, might be the answer to ...

User comments : 0