Nanodiamonds could improve effectiveness of breast cancer treatment

Apr 15, 2013
Nanodiamonds bound to the chemotherapy drug epirubicin are enclosed within a lipid membrane and coupled to antibodies specific to hard-to-treat tumors. These hybrid drug delivery agents cause tumors to regress in size while markedly improving drug tolerance. Credit: UCLA

(Phys.org) —Recently, doctors have begun to categorize breast cancers into four main groups according to the genetic makeup of the cancer cells. Which category a cancer falls into generally determines the best method of treatment.

But cancers in one of the four groups—called "basal-like" or "triple-negative" (TNBC)—have been particularly tricky to treat because they usually don't respond to the "receptor-targeted" treatments that are often effective in treating other types of breast cancer. TNBC tends to be more aggressive than the other types and more likely to recur, and can also have a higher mortality rate.

Fortunately, better drug therapies may be on the horizon. UCLA researchers and collaborators led by Dean Ho, a professor at the UCLA School of Dentistry and co-director of the school's Jane and Jerry Weintraub Center for Reconstructive Biotechnology, have developed a potentially more effective treatment for TNBC that uses nanoscale, diamond-like particles called nanodiamonds.

Nanodiamonds are between 4 and 6 nanometers in diameter and are shaped like tiny soccer balls. Byproducts of conventional mining and refining operations, the particles can form clusters following drug binding and have the ability to precisely deliver cancer drugs to tumors, significantly improving the drugs' desired effect. In the UCLA study, the nanodiamond delivery system has been able to home in on tumor masses in mice with triple negative breast cancer.

Findings from the study are published online April 15 in the peer-reviewed journal Advanced Materials.

"This study demonstrates the versatility of the nanodiamond as a targeted drug-delivery agent to a tumor site," said Ho, who is also a member of the California NanoSystems Institute at UCLA, UCLA's Jonsson Comprehensive Cancer Center and the UCLA Department of Bioengineering. "The agent we've developed reduces the that are associated with treatment and mediates significant reductions in tumor size."

The team combined several important cancer-fighting components on the nanodiamond surface, including Epirubicin, a highly toxic but widely used chemotherapy drug that is often administered in combination with other . The new compound was then bound to a cell-membrane material coated with antibodies that were targeted toward the epidermal growth factor receptor, which is highly concentrated on the surfaces of TNBC cells. The resulting agent is a drug-delivery system called a nanodiamond-lipid hybrid compound, or NDLP.

When tested on mice, the agent was shown to notably decrease tumor growth and eliminate the devastating side effects of cancer treatment.

Because of its toxicity, Epirubicin, when administered alone can cause serious side effects, such as heart failure and reduced white blood cell count, and it has been linked to an increased risk for leukemia. In the study, all of the mice that were given Epirubicin alone died well before the completion of the study. But all the mice given Epirubicin through the targeted NDLPs survived the treatment, and some of the tumors even regressed until they were no longer visible.

"Triple-negative breast cancer is often very aggressive and hard to treat, making aggressive chemotherapy a requirement," said Dr. Edward K. Chow, co-first author of the study and an assistant professor at the Science Institute of Singapore. "The targeting and therapeutic efficiency of the nanodiamond-lipid agents were quite remarkable. The simultaneous tumor regression and improved drug tolerance are promising indicators for the continued development of the nanodiamonds toward clinical translation."

The research team is now studying the efficacy and safety of the NDLPs in larger animals. Additional research objectives include determining whether can enhance the tolerance of a wide spectrum of highly toxic drug compounds, which may improve current treatment options and outcomes. These discoveries will serve as precursors for human trials, the researchers said.

"The nanodiamond-lipid hybrid developed in this study is a modular platform," said Laura Moore, a graduate student in Ho's laboratory and a co-first author of the study. "Therefore, we can easily bind a wide spectrum of targeting antibodies and drug compounds to address several diseases."

Dr. No-Hee Park, dean of the UCLA School of Dentistry, noted that the research will provide a foundation for future clinical applications.

"This pioneering study conducted by Dean Ho and his team provides a better understanding of the capabilities of the nanodiamond material to address several diseases," Park said. "Their work is of paramount importance."

Explore further: Gelatin nanoparticles could deliver drugs to the brain

More information: onlinelibrary.wiley.com/doi/10… a.201300343/abstract

Related Stories

Nanodiamonds take big step toward battling cancer

Mar 09, 2011

Chemotherapy drug resistance contributes to treatment failure in more than 90 percent of metastatic cancers. Overcoming this hurdle would significantly improve cancer survival rates.

Nanodiamond Drug Device Could Transform Cancer Treatment

Oct 27, 2008

A team of investigators at Northwestern University has developed a promising nanomaterial-based biomedical device that could be used to deliver chemotherapy drugs locally to sites where cancerous tumors have been surgically ...

Game-changing nanodiamond discovery for MRI

Jan 14, 2010

A Northwestern University study shows that coupling a magnetic resonance imaging (MRI) contrast agent to a nanodiamond results in dramatically enhanced signal intensity and thus vivid image contrast.

Drug shows promise for triple-negative breast cancer

Jul 03, 2012

(Medical Xpress) -- A promising new therapy for hard-to-treat triple-negative breast cancer has been reported in the journal Breast Cancer Research by a team at the Tulane University School of Medicine, led by ...

Recommended for you

'Mind the gap' between atomically thin materials

23 hours ago

When it comes to engineering single-layer atomic structures, "minding the gap" will help researchers create artificial electronic materials one atomic layer at a time, according to a team of materials scientists. ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

manifespo
not rated yet Apr 16, 2013
quite innovative! put tumors in an ultra centrifuge to subject them to massive shear stresses
Birger
not rated yet Apr 16, 2013
"...have been particularly tricky to treat because they usually don't respond to the "receptor-targeted" treatments"

"In the UCLA study, the nanodiamond delivery system has been able to home in on tumor masses in mice with triple negative breast cancer"

The particles "targeted toward the epidermal growth factor receptor, which is highly concentrated on the surfaces of TNBC cells" -So HOW IS THIS DIFFERENT from other treatments that targets the receptors????? Why do particles with nanodiamonds succeed where other particles fail?

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.