Mosquito genetic complexity may take a bite out of efforts to control malaria

Apr 01, 2013

A surprising research discovery in mosquitoes could affect future prospects for malaria control. A team of scientists from West Africa, the United States and the United Kingdom found that the mosquito, Anopheles gambiae, which was thought to be splitting into two completely new species, may actually have a more complex range of forms due to frequent inter-mating. The resulting hybrids may have implications for insecticide resistance and malaria parasite infectivity. The study published in the April 2013 issue of the journal GENETICS, documents substantial amounts of hybridization among two separate mosquito types in a large area spanning four countries in sub-Saharan western Africa.

"Our research shows that Anopheles gambiae mosquitoes, which are responsible for most cases of malaria in Africa, are more genetically complex than we thought due to interbreeding," said David J. Conway, Ph.D., one of the researchers from the London School of Hygiene & Tropical Medicine in the United Kingdom, and the Medical Research Council Unit in The Gambia. "Mosquitoes are very good at evolving quickly and this information will help us use existing control methods appropriately and consider possible new tools that will further efforts in Africa."

The scientists collected mosquitoes from houses located within 100 kilometers of the Atlantic coast in Senegal, Gambia, Guinea Bissau, and Republic of Guinea. They characterized the mosquitoes' DNA to identify the proportions of each major type, "M", "S", and "M/S" forms. Pools of each of the forms of mosquitoes from representative sites were analyzed for genome-wide genetic profiles revealing that the genomes, which are known to be different between the forms, are not different in these areas. That is, the genetic variation that exists is shared between the forms, as if they were a single species.

"Mosquito-borne illnesses can be a death sentence in developing nations," said Mark Johnston, Editor-in-Chief of the journal GENETICS. "It is crucial that we understand the genetic architecture of mosquito populations so we can develop ways to safeguard people from malaria. This research reveals some of the difficulty of eradicating this disease."

Explore further: York's anti-malarial plant given Chinese approval

More information: Nwakanma, Davis C., Daniel E. Neafsey, Musa Jawara, Majidah Adiamoh, Emily Lund, Amabelia Rodrigues, Kovana M. Loua, Lassana Konate, Ngayo Sy, Ibrahima Dia, T. Samson Awolola, Marc A. T. Muskavitch, and David J. Conway, Breakdown in the Process of Incipient Speciation in Anopheles gambiae, Genetics, April 2013, 193:1221-1231

Related Stories

Mosquito genetics may offer clues to malaria control

Oct 05, 2012

An African mosquito species with a deadly capacity to transmit malaria has a perplexing evolutionary history, according to discovery by researchers at the Fralin Life Science Institute at Virginia Tech.

Scientists engineer mosquito immune system to fight malaria

Dec 22, 2011

Researchers at the Johns Hopkins Malaria Research Institute have demonstrated that the Anopheles mosquito's innate immune system could be genetically engineered to block the transmission of malaria-causing parasites to humans. ...

Recommended for you

York's anti-malarial plant given Chinese approval

Apr 24, 2015

A new hybrid plant used in anti-malarial drug production, developed by scientists at the University of York's Centre for Novel Agricultural Products (CNAP), is now registered as a new variety in China.

The appeal of being anti-GMO

Apr 24, 2015

A team of Belgian philosophers and plant biotechnologists have turned to cognitive science to explain why opposition to genetically modified organisms (GMOs) has become so widespread, despite positive contributions ...

Chinese team performs gene editing on human embryo

Apr 23, 2015

(Phys.org)—A team of researchers in China has announced that they have performed gene editing on human embryos. In their paper uploaded to the open access site Protein & Cell (after being rejected by Nat ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

CQT
1 / 5 (1) Apr 02, 2013
Genetic asymmetrical wing span alteration till eradication research programs are completed.
"The genetic variation that exists is shared between the forms, as if they were a single species." Green light.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.