Large-scale screen reveals how numerous signaling pathways intersect at the cell's primary protein-processing center

Apr 24, 2013
Large-scale screen reveals how numerous signaling pathways intersect at the cell’s primary protein-processing center
Many proteins undergo extensive processing and modification within the stacked compartments of the Golgi apparatus. Credit: iStockphoto/Thinkstock

Many proteins undergo extensive modification after being synthesized, particularly those that are secreted or embedded in the cell membrane. This is achieved within the Golgi apparatus (see image), a cellular organelle consisting of multiple membrane-bound compartments known as cisternae. Each of these contains specific sets of protein-modifying enzymes, which sequentially modify their targets. For example, many proteins undergo glycosylation, which entails the stepwise addition of complex sugar molecules.

Golgi function depends heavily on proper organization, particularly in . In an ambitious study, a research team led by Frederic Bard of the A*STAR Institute of has identified proteins that maintain this organelle's structure and function. Many critical cellular functions are managed by signaling enzymes that either add or remove phosphate chemical groups from , known respectively as kinases and phosphatases. Bard and co-workers focused on a set of 948 proteins encompassing most of these enzymes.

The researchers used a technique called to specifically reduce production of each protein in , and then applied a sophisticated imaging strategy to determine the impact on different subsets of Golgi cisternae. A series of pilot experiments using treatments known to affect Golgi function enabled them to 'train' their imaging software to recognize the physiological hallmarks associated with different disruptions. In parallel, Bard and co-workers applied a targeted fluorescent labeling strategy to 'color code' the various Golgi subcompartments, allowing them to determine which of these were specifically affected in each experiment.

Using the trained imaging algorithm, the researchers identified 159 signaling factors that apparently contribute to Golgi organization and structure. Many of these were directly linked to critical Golgi functions, such as the dynamic behavior of cisternal membranes or the trafficking system that physically shuttles molecules between cisternae. Several of the targets identified specifically transmit signals in response to extracellular cues, indicating that Golgi organization may be greatly affected by the environment outside of the cell.

Importantly, many of these signaling factors exert a particularly strong influence on glycosylation patterns. "The sheer complexity and diversity of glyco-phenotypes arising from signaling-gene depletion were very surprising," says Bard. Given that both signaling pathways and protein glycosylation are highly prone to disruption in cancerous cells, these data suggest that the Golgi could be an important nexus for some tumorigenic processes. Bard will explore this possibility in future work. "We plan to decipher the specific cascades of glycosylation regulation that are frequently activated in tumor cells," he says.

Explore further: Fighting bacteria—with viruses

More information: Chia, J., Goh, G., Racine, V., Ng, S., Kumar, P. & Bard, F. RNAi screening reveals a large signaling network controlling the Golgi apparatus in human cells. Molecular Systems Biology 8, 629 (2012). www.nature.com/msb/journal/v8/… /full/msb201259.html

add to favorites email to friend print save as pdf

Related Stories

Stretching the Golgi: a link between form and function

Oct 15, 2009

A research team at the University of California, San Diego School of Medicine has provided a surprisingly simple explanation for the mechanism and features of the "Golgi apparatus" - a structure that has baffled ...

Researchers discover a protein that amplifies cell death

Jan 15, 2009

Scientists at Albert Einstein College of Medicine of Yeshiva University have identified a small intracellular protein that helps cells commit suicide. The finding, reported as the "paper of the week" in the ...

Surprising origin of cell's internal highways

Jun 20, 2007

Scientists have long thought that microtubules, part of the microscopic scaffolding that the cell uses to move things around in order to hold its shape and divide, originated from a tiny structure near the nucleus, called ...

Recommended for you

Fighting bacteria—with viruses

Jul 24, 2014

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

Jul 24, 2014

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

User comments : 0