For the first time, researchers isolate adult stem cells from human intestinal tissue

April 4, 2013

For the first time, researchers at the University of North Carolina at Chapel Hill have isolated adult stem cells from human intestinal tissue.

The accomplishment provides a much-needed resource for scientists eager to uncover the true mechanisms of human . It also enables them to explore new tactics to treat or to ameliorate the side effects of chemotherapy and radiation, which often damage the gut.

"Not having these cells to study has been a significant roadblock to research," said senior study author Scott T. Magness, PhD, assistant professor in the departments of medicine, biomedical engineering, and cell and at UNC. "Until now, we have not had the technology to isolate and study these – now we have to tools to start solving many of these problems"

The UNC study, published online April 4, 2013, in the journal Stem Cells, represents a leap forward for a field that for many years has had to resort to conducting experiments in cells from mice. While significant progress has been made using mouse models, differences in stem cell biology between mice and humans have kept researchers from investigating new therapeutics for human afflictions.

"While the information we get from mice is good foundational mechanistic data to explain how this works, there are some opportunities that we might not be able to pursue until we do similar experiments with human tissue," lead study co-author Adam D. Gracz, a graduate student in Magness' lab. Megan K. Fuller, MD, was also co-lead author of the study.

The Magness lab was the first in the United States to isolate and grow single intestinal stem cells from mice, so they had a leg up when it came to pursuing similar techniques in human tissue. Plus the researchers were able to get sections of human small intestine for their experiments that otherwise would have been discarded after gastric bypass surgery at UNC.

To develop their technique, the researchers investigated whether the approach they had taken in mice would work in . They first looked to see if the same molecules they had found stuck on the surface of mouse stem cells were also present on human stem cells. The researchers established that these specific molecules – called CD24 and CD44—were indeed the same between the two species. They then attached fluorescent tags to these molecules and used a special machine called a fluorescence activated cell sorter to identify and isolate the stem cells from the samples.

They found that not only could they isolate the human stem cells from human , but that they also could separate different types of intestinal stem cells from each other. These two types of stem cells – active and reserve – are a hot topic for stem cell researchers who are still trying to figure out how reserve stem cells cycle in to replenish active stem cells damaged by injury, chemotherapy or radiation.

"Now that we have been able to do this, the next step is to carefully characterize these populations to assess their potential," said Magness. "Can we expand these cells outside of the body to potentially provide a cell source for therapy? Can we use these for tissue engineering? Or to take it to the extreme, can we genetically modify these cells to cure inborn genetic disorders or inflammatory bowel disease? Those are some questions that we are going to explore in the future."

Explore further: The making of an intestinal stem cell

Related Stories

The making of an intestinal stem cell

March 5, 2009

Researchers have found the factor that makes the difference between a stem cell in the intestine and any other cell. The discovery reported in the March 6th issue of the journal Cell, a Cell Press publication, is an essential ...

Recommended for you

Researchers design first artificial ribosome

July 29, 2015

Researchers at the University of Illinois at Chicago and Northwestern University have engineered a tethered ribosome that works nearly as well as the authentic cellular component, or organelle, that produces all the proteins ...

Studies reveal details of error correction in cell division

July 29, 2015

Cell biologists led by Thomas Maresca at the University of Massachusetts Amherst, with collaborators elsewhere, report an advance in understanding the workings of an error correction mechanism that helps cells detect and ...

Researchers discover new type of mycovirus

July 29, 2015

Researchers, led by Dr Robert Coutts, Leverhulme Research Fellow from the School of Life and Medical Sciences at the University of Hertfordshire, and Dr Ioly Kotta-Loizou, Research Associate at Imperial College, have discovered ...

Stressed out plants send animal-like signals

July 29, 2015

University of Adelaide research has shown for the first time that, despite not having a nervous system, plants use signals normally associated with animals when they encounter stress.

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.