Hydrogel with potent antibacterial activity promises to protect hospital patients from difficult-to-treat infections

April 24, 2013
Hydrogel with potent antibacterial activity promises to protect hospital patients from difficult-to-treat infections
An antibacterial hydrogel coated onto the center of a Petri dish (left) prevents bacterial growth, whereas an untreated Petri dish (right) is completely covered with bacteria. Credit: 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

Coating medical supplies with an antimicrobial material is one approach that bioengineers are using to combat the increasing spread of multidrug-resistant bacteria. Multidrug-resistant Staphylococcus aureus (MRSA) and related pathogens, for example, can lengthen hospital stay and even cause death. A research team at the A*STAR Institute of Bioengineering and Nanotechnology in Singapore has now developed a highly effective antimicrobial coating based on polymers. The coating can be applied to medical equipment, such as catheters, explains Yi-Yan Yang, who led the research.

Yang's coating was inspired by a well-known family of antimicrobial materials called cationic polymers. On contact, these materials kill microbes by attaching to, infiltrating and ultimately rupturing their cell walls. When these polymers are modified to form a coating, however, their is usually compromised. They also tend to accumulate a layer of dead microorganisms on their surface. "This can trigger an immune response and inflammation in the patient, and may also block the antimicrobial function of the coating," Yang explains.

To overcome these limitations, Yang and her team developed their polymer-based hydrogel coating to have antifouling as well as potent . They made the coating by combining a 'block' of poly(ethylene glycol) (PEG)—which is known for its fouling resistance—with a polycarbonate. They then made the polycarbonate block functional by adding two components: cationic groups to capture passing pathogens; and water-repellent hydrophobic units to puncture their lipid-rich cell membranes and kill the cell.

Yang and her team showed that their gel coating was highly effective at killing a range of multidrug- and fungi and preventing pathogens from growing on surfaces (see image). A simple rinse with a buffer solution was sufficient to remove the , confirming the coating's antifouling capabilities. The team also confirmed that the coating is harmless to red blood cells and does not irritate the skin.

Furthermore, the researchers showed that the hydrogel could be added to the surface of a standard hospital catheter, preventing microbial growth. As the coating can be formed under mild, physiological conditions, the hydrogels can also be used as a wound dressing, Yang notes. "For example, hydrogel dressings could form after spraying the gel precursor solution onto wounds," she says.

According to Yang, the research team's next step will be to investigate wound healing using these gels in animal studies. "At the same time, we will also seek industry partners to help commercialize these hydrogels, especially for medical device coating applications," she says.

Explore further: NTU scientists invent superbug killers

More information: Liu, S. Q., Yang, C., Huang, Y., Ding, X., Li, Y. et al. Antimicrobial and antifouling hydrogels formed in situ from polycarbonate and poly(ethylene glycol) via Michael addition. Advanced Materials 24, 6484–6489 (2012). onlinelibrary.wiley.com/doi/10.1002/adma.201202225/abstract

Related Stories

NTU scientists invent superbug killers

May 10, 2012

The superbugs have met their match. Conceived at Nanyang Technological University (NTU), it comes in the form of a coating which has a magnetic-like feature that attracts bacteria and kills them without the need for antibiotics.

A new anti-frost and anti-fog coating for glass

February 27, 2013

In an advance toward glass that remains clear under the harshest of conditions, scientists are reporting development of a new water-repellant coating that resists both fogging and frosting. Their research on the coating, ...

Recommended for you

New polymer creates safer fuels

October 1, 2015

Before embarking on a transcontinental journey, jet airplanes fill up with tens of thousands of gallons of fuel. In the event of a crash, such large quantities of fuel increase the severity of an explosion upon impact. Researchers ...

Researchers print inside gels to create unique shapes

September 30, 2015

(Phys.org)—A team of researchers at the University of Florida has taken the technique of printing objects inside of a gel a step further by using a highly shear-rate sensitive gel. In their paper published in the journal ...

How a molecular motor untangles protein

October 1, 2015

A marvelous molecular motor that untangles protein in bacteria may sound interesting, yet perhaps not so important. Until you consider the hallmarks of several neurodegenerative diseases—Huntington's disease has tangled ...

Anti-aging treatment for smart windows

October 1, 2015

Electrochromic windows, so-called 'smart windows', share a well-known problem with rechargeable batteries – their limited lifespan. Researchers at Uppsala University have now worked out an entirely new way to rejuvenate ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.