Research group devises a way to control surface plasmon polaritons

Apr 08, 2013 by Bob Yirka weblog
(a) Schematic of a unidirectional SPPs coupler. The coupler consists of an array of rectangular apertures with spatially varying orientations on a metal film. (b) Ordinary and anomalous refraction and diffraction for the two circular polarization states. The anomalous diffraction orders are asymmetric about the surface normal. (c) Dispersion curve of SPPs and the momentum matching condition for ordinary and anomalous diffraction orders. (d) Only one of the anomalous diffraction orders in (b) can be matched to the SPP dispersion relation to launch unidirectional SPP due to the asymmetry in the anomalous diffraction orders. Interestingly, when the helicity of the incident beam is reversed, so is the direction of the SPP excitation. SPP, surface plasmon polariton. Credit: (c) Nature Publishing Group, Light: Science & Applications (2013) 2, e70; doi:10.1038/lsa.2013.26

(Phys.org) —A team made up of researchers from the U.K., China and Germany has developed, for the first time, a way to control surface plasmon polaritons (SPPs), perhaps paving the way to integrated plasmonic circuits. In their paper published in Light: Science & Applications, describing their achievement, the team details how they created a metal film with nanometer-sized holes in it set in a certain way to allow for controlling the quasiparticles that arise during the interaction between light and a metal surface.

The idea is essentially, to couple to the of a metamaterial, in a specific direction. Normally, when light strikes such a surface, SPPs in the form of quasiparticles arise due to the mixing of light with surface electrons—they're part light and part electron wave and exist only very near the surface. When the SPPs are excited under normal conditions, they tend to propagate in every direction, which isn't very useful. In this new effort, the team devised a means for controlling the direction in which they flow.

To get the SPPs to move only in the desired direction, the team created what they describe as a "metasurface" by covering a material with a metal film that had rectangular nanometer-sized holes in it—all situated in a particular fashion to impact the quasiparticles in desired ways. In so doing, they found they could the direction in which the SPPs flowed by switching the circular polarization direction of the light that was shined on it—right or left. The holes cause phase delays, the researchers explain, which breaks the symmetry of the excitation of the SPPs in two directions, thus their orientation is critical. Because of that they found that that they could cause the SPPs to run in one or the other direction on command, by simply adjusting the apertures.

The team took their research further by adding polarization modulators to the film which resulted in the creation of a plasmonic circuit that they were able to control. They next plan to improve the coupling that occurs in the film and to perhaps find a means for allowing LCD control of the propagation of the SPPs—that, they say, would allow for the design of much more complex .

Explore further: High power laser sources at exotic wavelengths

More information: Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity, Light: Science & Applications (2013) 2, e70; doi:10.1038/lsa.2013.26 . Published online 29 March 2013

Abstract
Surface plasmon polaritons (SPPs) have been widely exploited in various scientific communities, ranging from physics, chemistry to biology, due to the strong confinement of light to the metal surface. For many applications, it is important that the free space photon can be coupled to SPPs in a controllable manner. In this Letter, we apply the concept of interfacial phase discontinuity for circularly polarizations on a metasurface to the design of a novel type of polarization-dependent SPP unidirectional excitation at normal incidence. Selective unidirectional excitation of SPPs along opposite directions is experimentally demonstrated at optical frequencies by simply switching the helicity of the incident light. This approach, in conjunction with dynamic polarization modulation techniques, opens gateway towards integrated plasmonic circuits with electrically reconfigurable functionalities.

via Nanotechweb

Related Stories

Unique nanostructure produces novel 'plasmonic halos'

Feb 07, 2013

Using the geometric and material properties of a unique nanostructure, Boston College researchers have uncovered a novel photonic effect where surface plasmons interact with light to form "plasmonic halos" ...

Recommended for you

High power laser sources at exotic wavelengths

Apr 14, 2014

High power laser sources at exotic wavelengths may be a step closer as researchers in China report a fibre optic parametric oscillator with record breaking efficiency. The research team believe this could ...

Combs of light accelerate communication

Apr 14, 2014

Miniaturized optical frequency comb sources allow for transmission of data streams of several terabits per second over hundreds of kilometers – this has now been demonstrated by researchers of Karlsruhe ...

User comments : 0

More news stories

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.

Researchers see hospitalization records as additional tool

Comparing hospitalization records with data reported to local boards of health presents a more accurate way to monitor how well communities track disease outbreaks, according to a paper published April 16 in the journal PLOS ON ...

Ebola virus in Africa outbreak is a new strain

The Ebola virus that has killed scores of people in Guinea this year is a new strain—evidence that the disease did not spread there from outbreaks in some other African nations, scientists report.