Flies sleep just like us

April 19, 2013
Close-up of the head of Calliphora vomitoria. Credit: Wikipedia.

(Phys.org) —Researchers at The University of Queensland have discovered that, like humans, flies sleep in stages of different intensities.

The UQ Queensland Brain Institute's Associate Professor Bruno van Swinderen said that human sleep involved the (REM) stage, or light sleep during which dreaming typically occurred, and several stages of non-REM sleep, or .

"We have shown that sleep in flies also appears to alternate between lighter and deeper sleep stages, suggesting different functions for each even in the smallest animal brains."

The study, led by Dr Bart van Alphen, measured sleep intensity in flies by recording their and responsiveness to .

During waking behaviour and learning, some synaptic connections – the parts of the neurons that allow cell-to- – become strengthened.

One proposed function of deeper sleep stages is to proportionally weaken all synapses in the brain, so as to preserve learning while decreasing energy requirements.

The research group discovered that if they activated learning pathways during the day, the flies needed deeper sleep at night.

If they mutated a protein known to be important for weakening synapses, the flies compensated by sleeping more deeply even during the day.

"This suggests that synaptic weakening probably involves that are engaged during deeper sleep stages," Associate Professor van Swinderen said.

Fruit flies are being increasingly used as a model for studying the role of sleep in disease.

Associate Professor van Swinderen said that it is important to consider the importance of different stages of sleep in future studies of this kind.

A second study showed that a better understanding of sleep processes in the fly model might be relevant to .

The study, led by Dr Benjamin Kottler, found that the that promote sleep in the fly are also important for regulating sensitivity to a commonly used general anaesthetic, isoflurane.

Increasing activity of sleep-promoting neurons in the fly brain resulted in increased sensitivity to anaesthesia, while stimulating wake-promoting neurons results in resistance to anaesthesia.

That is, flies that slept more were hypersensitive to anaesthesia and those that slept less were resistant to anaesthesia.

The first study, "A dynamic deep sleep stage in Drosophila", will be published online in the April 17 issue of Journal of Neuroscience.

The second study, "A sleep/wake circuit controls isoflurane sensitivity in Drosophila", was published on April 8 in Current Biology.

Explore further: 4 days of REM sleep deprivation contributes to a reduction of cell proliferation in rats

Related Stories

Searching for shut eye: Study identifies possible sleep gene

July 29, 2008

While scientists and physicians know what happens if you don't get six to eight hours of shut-eye a night, investigators have long been puzzled about what controls the actual need for sleep. Researchers at the University ...

New research sheds light on fly sleep circuit

November 26, 2008

In a novel study appearing this week in Neuron, Brandeis researchers identify for the first time a specific set of wake-promoting neurons in fruit flies that are analogous to cells in the much more complex sleep circuit in ...

Recommended for you

Male seahorse and human pregnancies remarkably alike

September 1, 2015

Their pregnancies are carried by the males but, when it comes to breeding, seahorses have more in common with humans than previously thought, new research from the University of Sydney reveals.

Parasitized bees are self-medicating in the wild, study finds

September 1, 2015

Bumblebees infected with a common intestinal parasite are drawn to flowers whose nectar and pollen have a medicinal effect, a Dartmouth-led study shows. The findings suggest that plant chemistry could help combat the decline ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.