Flies with personality

Apr 08, 2013 by Jonathan Wood & Karen David
Flies with personality
Credit: Wikimedia/andre karwath

(Phys.org) —Fruit flies may have more individuality and personality than we imagine.

And it might all be down to a bit of genetic shuffling in that makes every fly brain unique, suggest Oxford University scientists.

Their new study has found that small called 'transposons' are active in neurons in the fly brain. Transposons are also known as 'jumping genes', as these short scraps of DNA have the ability to move, cutting themselves out from one position in the genome and inserting themselves somewhere else.

The inherent randomness of the process is likely to make every fly brain unique, potentially providing behavioural individuality – or 'fly personality'. So says Professor Scott Waddell, who led the work at the University of Oxford Centre for and Behaviour: 'We have known for some time that individual animals that are supposed to be genetically identical behave differently.

'The extensive variation between fly brains that this mechanism could generate might demystify why some behave while others misbehave,' he suggests.

The Oxford researchers, along with US colleagues at the University of Massachusetts Medical School and Howard Hughes Medical Institute, were able to deep-sequence the DNA from small numbers of nerve cells in the brains of Drosophila .

They identified many transposons that were inserted in a number of important memory-related genes. Whether this is detrimental or advantageous to the fly remains an open question, the researchers say.

Scott Waddell notes that neural transposition has been described in rodent and , and transposons have historically been considered to be problematic parasites. New insertions of transposons can on occasion disrupt genes (as was found in this study), and transposons have been associated to some human disorders such as schizophrenia.

However, it is also possible that organisms have harnessed transposition to generate variation within cells, and by extension create variation between individual animals that may turn out to be favourable.

Scott Waddell wants next to determine whether neural transposition provides an explanation for variation in fruit fly behaviour by finding ways of halting the process in flies in his lab.

Explore further: How lizards regenerate their tails: Researchers discover genetic 'recipe'

More information: www.sciencemag.org/content/340/6128/91.abstract

Related Stories

Computer Technique Creates Map of a Fruit Fly Brain

Apr 12, 2010

Researchers, led by Hanchuan Peng, at the Janelia Farm Research Campus at the Howard Hughes Medical Institute in Ashburn, Virginia are working to map the fruit fly brain in a way that highlights how neurons ...

Biologists identify genes regulating sleeping and feeding

Jun 10, 2010

In the quest to better understand how the brain chooses between competing behaviors necessary for survival, scientists at the University of Massachusetts Medical School and New York University have isolated two genes in the ...

Recommended for you

Canola flowers faster with heat genes

8 hours ago

(Phys.org) —A problem that has puzzled canola breeders for years has been solved by researchers from The University of Western Australia - and the results could provide a vital breakthrough in understanding ...

Sequencing the genome of salamanders

Aug 20, 2014

University of Kentucky biologist Randal Voss is sequencing the genome of salamanders. Though we share many of the same genes, the salamander genome is massive compared to our own, about 10 times as large.

User comments : 0