Most distant blazar is a high-energy astrophysics puzzle

April 18, 2013 by Tim Stephens
Distant blazar is a high-energy astrophysics puzzle
Artist's concept of the Hubble Space Telescope viewing ultraviolet light from the jet of the active galactic nucleus of PKS 1424+240. Clouds of hydrogen gas along the line of sight absorb the light at known frequencies, allowing the redshift and distance of each cloud to be determined. The most distant gas cloud determines the minimum distance to PKS 1424+240. Data from the Fermi Gamma-ray Space Telescope, shown on the horizon at the left, were also used for this study. Credit: Nina McCurdy, component images courtesy of NASA

(Phys.org) —Blazars are the brightest of active galactic nuclei, and many emit very high-energy gamma rays. New observations of the blazar known as PKS 1424+240 show that it is the most distant known source of very high-energy gamma rays, but its emission spectrum now appears highly unusual in light of the new data.

A team led by physicists at the University of California, Santa Cruz, used data from the Hubble Space Telescope to set a lower limit for the blazar's redshift (z ≥ 0.6035), which corresponds to a distance of at least 7.4 billion light-years. Over such a great distance, a substantial proportion of the gamma rays should be absorbed by the , but calculations that account for the expected absorption yield an unexpected emission spectrum for the blazar.

"We're seeing an extraordinarily bright source which does not display the characteristic emission expected from a very high-energy blazar," said Amy Furniss, a graduate student at the Santa Cruz Institute for (SCIPP) at UCSC and first author of a paper describing the new findings. The paper has been accepted for publication in Astrophysical Journal Letters and is currently posted on arXiv.org.

Coauthor David Williams, adjunct professor of physics at UC Santa Cruz, said the findings may indicate something new about the emission mechanisms of blazars, the extragalactic background light, or the propagation of gamma-ray photons over .

"We're finding very high-energy gamma-ray sources at greater distances than we thought we might, and in doing so we're finding some things we don't entirely understand," Williams said. "Having a source at this distance will allow us to better understand how much background absorption there is and test the cosmological models that predict the extragalactic background light."

The extragalactic background light (EBL) is the diffuse radiation from all , a dim but pervasive glow that fills the universe. When a high-energy gamma-ray photon collides with a lower-energy EBL photon, they annihilate and create an electron-positron pair. The farther gamma rays have to travel the more likely they are to be absorbed by this mechanism. This limits the distance to which sources of very high- can be detected.

Measuring the EBL is extremely difficult because there are so many bright sources of light in our immediate neighborhood. In addition to estimates based on , astronomers have used galaxy counts to set a lower limit for the EBL. Using a model close to this lower limit to calculate the expected absorption of very high-energy gamma rays from PKS 1424+240, Furniss derived an intrinsic gamma-ray emission spectrum for the blazar. The results, however, deviate from the expected emission based on current blazar models.

Blazar emission is thought to result from a relativistic jet of particles powered by matter falling onto a supermassive black hole at the center of the host galaxy. "There may be something going on in the emission mechanisms of the blazar that we don't understand," Williams said. "There are more exotic explanations as well, but it may be premature to speculate at this point."

Gamma rays from PKS 1424+240 were first detected by the Fermi Gamma-ray Space Telescope and subsequently by the ground-based instrument VERITAS (Very Energetic Radiation Imaging Telescope Array System), which is sensitive to gamma-rays in the very high-energy (VHE) band from about 100 GeV to more than 10 TeV. To determine the redshift of the blazar—a measure of how much the light from an object has been stretched to longer wavelengths by the expansion of the universe—the researchers used data obtained by the 's Cosmic Origins Spectrograph for another research program.

Explore further: Gamma Ray Delay May Be Sign of 'New Physics'

Related Stories

Astrophysicists explore a blazar

March 18, 2009

An international team of astrophysicists using telescopes on the ground and in space have uncovered surprising changes in radiation emitted by an active galaxy. The picture that emerges from these first-ever simultaneous ...

Blazars

September 6, 2011

(PhysOrg.com) -- A blazar is a galaxy which, like a quasar, has an intensely bright central nucleus containing a supermassive black hole. In a blazar, however, the emitted light sometimes includes extremely high energy gamma ...

A new class of extragalactic objects

October 29, 2012

A blazar is a galaxy with an intensely bright central nucleus containing a supermassive black hole, much like a quasar. The difference is that a blazar can emit light with extremely high energy gamma rays that are sometimes ...

Astronomers measure nearby Universe's 'cosmic fog'

January 20, 2013

Researchers from the Laboratoire Leprince-Ringuet (CNRS/École Polytechnique) have carried out the first measurement of the intensity of the diffuse extragalactic background light in the nearby Universe, a fog of photons ...

Recommended for you

Distant planet's interior chemistry may differ from our own

September 1, 2015

As astronomers continue finding new rocky planets around distant stars, high-pressure physicists are considering what the interiors of those planets might be like and how their chemistry could differ from that found on Earth. ...

New Horizons team selects potential Kuiper Belt flyby target

August 29, 2015

NASA has selected the potential next destination for the New Horizons mission to visit after its historic July 14 flyby of the Pluto system. The destination is a small Kuiper Belt object (KBO) known as 2014 MU69 that orbits ...

Interstellar seeds could create oases of life

August 27, 2015

We only have one example of a planet with life: Earth. But within the next generation, it should become possible to detect signs of life on planets orbiting distant stars. If we find alien life, new questions will arise. ...

1 comment

Adjust slider to filter visible comments by rank

Display comments: newest first

Fleetfoot
5 / 5 (1) Apr 23, 2013
Great to see both the redshift and an arxiv link included for once.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.