Discovery paves the way for ultra fast high resolution imaging in real time

April 18, 2013 by Rebecca Scott
Image of a shaped bunch of ultrafast electrons. The pattern is meant to look like the iris shutter of a camera, invoking the idea of a fast snapshot. Credit Andrew McCulloch

( —Ultrafast high-resolution imaging in real time could be a reality with a new research discovery led by the University of Melbourne.

In work published in Nature Communications, researchers from the University of Melbourne and the ARC Centre for Excellence in Coherent X-ray Science have demonstrated that ultra short durations of generated from laser-cooled atoms can be both very cold and ultra-fast.

Lead researcher Associate Professor Robert Scholten said the surprising finding was an important step towards making ultrafast high-resolution electron imaging a reality.

He said the finding would enhance the ability of scientists in labs to create high quality snapshots of rapid changes in and specimens.

", which uses electrons to create an image of a specimen or biological molecule has revolutionised science by showing us the structure at micro and even nanometre scales," Associate Professor Scholten said.

"But it is far too slow to show us critical dynamic processes, for example the folding of a which requires time resolution of picoseconds (billionth of a billionth of a second)."

"Our discovery opens up the possibility to dramatically enhance the technology."

Researchers say imaging at this level is like making a 'molecular movie', The temperature of the electrons determines how sharp the images can be, while the electron pulse duration has a similar effect to .

The team has been able to combine these two qualities of speed and temperature, generating ultrafast electron pulses with cold electrons, paving the way for new advances in the field.

Explore further: Cold electrons to aid better design of drugs and materials

Related Stories

Clocking Ultra-fast Electron Bunches

July 30, 2010

( -- Brookhaven researchers have developed a device that acts like a high-tech stopwatch for speedy packs of electrons just trillionths of a second long. This new diagnostic tool could aid in the development of ...

Moving microscopic vision into another new dimension

June 29, 2011

Scientists who pioneered a revolutionary 3-D microscope technique are now describing an extension of that technology into a new dimension that promises sweeping applications in medicine, biological research, and development ...

Watching Electrons with Lasers

November 6, 2008

( -- A team of researchers from the Stanford PULSE Institute for Ultrafast Energy Science at SLAC National Accelerator Laboratory has recently moved a step closer to visualizing the motions of electrons in molecules ...

Recommended for you

For the first time, magnets are be made with a 3-D printer

October 25, 2016

Today, manufacturing strong magnets is no problem from a technical perspective. It is, however, difficult to produce a permanent magnet with a magnetic field of a specific pre-determined shape. That is, until now, thanks ...

Researchers discover new rules for quasicrystals

October 25, 2016

Crystals are defined by their repeating, symmetrical patterns and long-range order. Unlike amorphous materials, in which atoms are randomly packed together, the atoms in a crystal are arranged in a predictable way. Quasicrystals ...

Making silicon-germanium core fibers a reality

October 25, 2016

Glass fibres do everything from connecting us to the internet to enabling keyhole surgery by delivering light through medical devices such as endoscopes. But as versatile as today's fiber optics are, scientists around the ...

Controlling ultrasound with 3-D printed devices

October 25, 2016

Ultrasound is more than sound. Obstetricians use it to peer inside a woman's uterus and observe a growing baby. Surgeons use powerful beams of ultrasound to destroy cancer cells. Researchers fire ultrasound into materials ...


Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.