Cryogenic machining enables guaranteeing safety of aeronautic sector parts

Apr 24, 2013

CIC marGUNE, the Cooperative Research Centre for High-Performance Manufacture, is coordinating a line of research on cryogenic machining for developing the safety of parts for the aeronautic sector. This machining method has less impact on the environment than conventional methods. Moreover, it considerably enhances the useful life of safety parts and reduces costs. CIC marGUNE is working in collaboration with the High-Performance Manufacturing Group at the Higher Engineering School in Bilbao (UPV/EHU), Tecnalia and the University of Mondragon.

Cryogenic machining involves employing refrigerant gas in the process of machining. CIC marGUNE is coordinating a line of research on cryogenic machining, in which the UPV/EHU, Tecnalia and the University of Mondragón are participating. The aim of the line of research is to guarantee a clean and, moreover, to contribute to the safety of parts in the sector.

Machining is a process of manufacturing parts though the elimination of material (swarf). The cutting fluids used in most machining operations producing swarf have two aims: on the one hand, lubricating the cutting zone and, on the other, , i.e. eliminating the heat in the cutting zone so as not to affect the machined surface. But these fluids are harmful to the environment and for persons—there are a hundred illnesses associated with this kind of .

To solve these problems presented by conventional machining methods, one of the principal alternatives that is being currently investigated is cryogenic machining - an innovative method of refrigerating the and the critical points of the part during machining, thanks to the use of a very cold refrigerant gas, which can be liquid nitrogen or CO2.

Both and CO2 are basic and cheap products but, moreover, "CO2 can be applied externally to an already existing machine, without the need for any modification to the equipment, greatly saving on investment", according to Mr Franck Girot, coordinator of the CIC marGUNE research line. "There are already proof that the technology functions and so it is a research line directly related to our companies, and which may well arrive on to the market shortly".

Greater safety at lower cost

Safety parts for the aeronautic, automobile, railway, etc. sectors are currently being worked on. Sectors in which parts or components to be machined have to have a certain quality and, above all, not have surface damage, given that a break in a part is generally due to surface defects. This is why, "for these types of applications, cryogenic machining is a guarantee of avoiding such defects" stated Mr Girot. "This is an increasingly more controlled topic, especially in the aeronautic sector", he added. Each part undertaken has specific monitoring so as to know under what conditions the machining has been carried out and, at the same time, to guarantee that the part is not going to break during its life cycle due to surface defects.

Mr Girot highlighted that, in comparison with conventional machining systems, refrigeration of the cutting area which suffers the highest temperature during the process, avoids changes in the microstructure of the tool. This results in enhancements, often notable ones, in certain performance parameters of the materials; outstanding in this respect the increase in the life of the parts of between 50 and 100 %, in the resistance to wear and tear, in fatigue life, etc.

Moreover, "it is a process totally friendly to the environment, given that no kind of waste or dumping arises", stated Mr Girot. The cryogenic gases are obtained from other processes, and, thus, is a reuse of the gases, which otherwise would have to be eliminated without such benefit. During the machining of the parts, the fluid evaporates rapidly and returns to the atmosphere in a natural manner. The part is left completely clean of impregnations from the cutting fluids and do not produce any waste which might contaminate the machine tool, the swarf or the workplace. This is of major economic importance.

The system can work at higher speeds than those of conventional machining machines. Thus, productivity is increased and work of a higher quality is obtained, resulting in a reduction in the costs of producing the parts.

Explore further: Comfortable climate indoors with porous glass

add to favorites email to friend print save as pdf

Related Stories

New process could improve dental restoration procedures

Aug 10, 2010

(PhysOrg.com) -- Oral surgeons may one day have an easier, less costly approach to one important aspect of dental restoration, thanks to a newly patented process developed by researchers at Missouri University of Science ...

Recommended for you

Comfortable climate indoors with porous glass

11 hours ago

Proper humidity and temperature play a key role in indoor climate. In the future, establishing a comfortable indoor environment may rely on porous glass incorporated into plaster, as this regulates moisture ...

Crash-testing rivets

11 hours ago

Rivets have to reliably hold the chassis of an automobile together – even if there is a crash. Previously, it was difficult to predict with great precision how much load they could tolerate. A more advanced ...

Customized surface inspection

12 hours ago

The quality control of component surfaces is a complex undertaking. Researchers have engineered a high-precision modular inspection system that can be adapted on a customer-specific basis and integrated into ...

Sensors that improve rail transport safety

12 hours ago

A new kind of human-machine communication is to make it possible to detect damage to rail vehicles before it's too late and service trains only when they need it – all thanks to a cloud-supported, wireless ...

Tiny UAVs and hummingbirds are put to test

Jul 30, 2014

Hummingbirds in nature exhibit expert engineering skills, the only birds capable of sustained hovering. A team from the US, British Columbia, and the Netherlands have completed tests to learn more about the ...

User comments : 0