Chiral 'pinwheels' self-assembled from C60 and pentacene

April 10, 2013
Calculated map of the electron density changes due to the heterojunction showing electron transfer to the C60 in the center.

Chiral 'Pinwheels' self-assembled from C60 and pentacene
UHV STM image of C60-Pn in-plane chiral heterojunctions, overlaid with molecular models showing the orientation and the chirality (right-handed green, left-handed blue) (middle).
In a recent study from the Electronic & Magnetic Materials & Devices and Theory & Modeling groups at the Argonne National Laboratory, C60 and pentacene (Pn) molecules, two workhorses of organic electronics and opto-electronics, are observed to self-assemble on a Cu(111) surface into in-plane "pinwheel"-shaped and chiral heterojunctions. Calculations confirm that the heterostructures are energetically favorable conformations and reveal electron charge transfer from the Pn to the C60 in this chiral morphology, a critical signature of electronic heterojunctions.

The demonstration that these highly symmetric acceptor and donor molecules, which are widely used in organic electronics and photovoltaics, form chiral structures suggests a potential path to integrating chiral selectivity with optical absorption and charge separation, even with highly symmetric achiral . Studies in an ultrahigh vacuum (UHV) system with surface preparation and scanning tunneling microscopy (STM) capabilities were critical to characterizing the self-assembled systems at the atomic scale in an ultraclean environment. In addition, the computing cluster "Carbon" supported density functional theory calculations with van der Waals corrections on these complex structures.

Explore further: Results promising for computational quantum chemical methods for drug development

More information: Smerdon, J. et al. Chiral 'Pinwheel' Heterojunctions Self-Assembled from C60 and Pentacene, ACS Nano, ASAP (2013). pubs.acs.org/doi/abs/10.1021/nn304992c

Related Stories

Dutch chemists make new chiral palladium metal

April 23, 2009

Researchers at the University of Amsterdam (UvA) have succeeded in making the first ever piece of chiral palladium metal. The findings, by a research team led by Gadi Rothenberg, professor of Heterogeneous Catalysis and Sustainable ...

STM of individual grains in CVD-grown graphene

June 24, 2011

Users from Purdue University, working collaboratively with staff in the CNM Electronic & Magnetic Materials & Devices Group, studied CVD-grown graphene on polycrystalline copper foil for the first time at the atomic-scale. ...

The origin of organic magnets

March 2, 2012

Electrical engineers are starting to consider materials made from organic molecules -- including those made from carbon atoms -- as an intriguing alternative to the silicon and metals used currently in electronic devices, ...

Graphene decoupling of organic/inorganic interfaces

June 19, 2012

(Phys.org) -- Cryogenic ultrahigh vacuum scanning tunneling microscopy (STM) was employed by researchers in the Center for Nanoscale Materials Electronic & Magnetic Materials & Devices Group at the Argonne National Laboratory ...

Recommended for you

Reshaping the solar spectrum to turn light to electricity

July 28, 2015

When it comes to installing solar cells, labor cost and the cost of the land to house them constitute the bulk of the expense. The solar cells—made often of silicon or cadmium telluride—rarely cost more than 20 percent ...

Wafer-thin material heralds future of wearable technology

July 27, 2015

UOW's Institute for Superconducting and Electronic Materials (ISEM) has successfully pioneered a way to construct a flexible, foldable and lightweight energy storage device that provides the building blocks for next-generation ...

Could stronger, tougher paper replace metal?

July 24, 2015

Researchers at the University of Maryland recently discovered that paper made of cellulose fibers is tougher and stronger the smaller the fibers get. For a long time, engineers have sought a material that is both strong (resistant ...

Changing the color of light

July 23, 2015

Researchers at the University of Delaware have received a $1 million grant from the W.M. Keck Foundation to explore a new idea that could improve solar cells, medical imaging and even cancer treatments. Simply put, they want ...

0 comments

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.