Researchers devise a way to capture and release electromagnetic waves inside a metamaterial

Apr 12, 2013 by Bob Yirka report
Photographs of (a) the unit structure and (b) the waveguide. (c) Transmission spectra for various bias voltages. Credit: arXiv:1304.2443 [physics.optics]

(Phys.org) —A team of researchers at Kyoto University in Japan has discovered a way to capture and hold electromagnetic waves inside of a metalmaterial and then release them. As the group describes in their paper they've uploaded to the preprint server arXiv, the process involved creating a metamaterial with two different types of capacitors—one that absorbs or radiates waves and another that traps them.

Scientists have known since the 1990s that electromagnetic waves could be trapped, experiments had proved it. The problem since that time has been in finding a way to do it that allows the waves to remain usable afterwards. Prior to this new research, they only way to capture electromagnetic waves was by focusing them into a cloud of atoms that have the unique property of being able to absorb or allow waves to pass through depending on their frequency. Scientists discovered that they could change the frequency by shooting such with a laser—first trapping the waves, then releasing them. The problem of course was that the waves didn't come out in a way that was useful. In this new effort the researchers took a different approach, using materials that don't exist in nature and that allow for not only capturing electromagnetic waves, but for releasing them in the same state they were in when they arrived.

The technique involved creating a metamaterial with repeating units, each of which contain two variable capacitors. One was developed specifically to radiate waves or absorb them at a desired frequency—the other to simply to capture and hold them. Tuning the capacitors to a common frequency causes electromagnetic waves (in this case ) to be trapped, while un-tuning the capacitors allows the waves to escape, moving along their original path. Perhaps more importantly, the waves also maintained the same phase distribution as they had before striking the metamaterial—making them usable for real world applications.

The ability to capture and release without disturbing their properties holds promise for the creation of new types of devices such as those that utilize light for information storage, or sensors that can hold information until needed. It might also lead to new developments in quantum optics, which could of course help researchers looking to build the ever elusive quantum computer.

Explore further: Experiment with speeding ions verifies relativistic time dilation to new level of precision

More information: Storage of Electromagnetic Waves in a Metamaterial that Mimics Electromagnetically Induced Transparency, arXiv:1304.2443 [physics.optics] arxiv.org/abs/1304.2443

Abstract
We propose a method for dynamically controlling the properties of a metamaterial that mimics electromagnetically induced transparency (EIT) by introducing varactor diodes to manipulate the structural symmetry of the metamaterial. Dynamic modulation of the EIT property enables the storage and retrieval of electromagnetic waves. We confirmed that the electromagnetic waves were stored and released, while maintaining the phase distribution in the propagating direction.

via Arxiv Blog

Related Stories

Coke cans focus sound waves beyond the diffraction limit

Jul 12, 2011

(PhysOrg.com) -- When trying to focus sound waves into as small an area as possible, scientists run into a fundamental limit called the diffraction limit. That is, when sound waves are focused into a region ...

Team develops new metamaterial device

Feb 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

How to prevent earthquake damage: make buildings invisible

Feb 12, 2013

(Phys.org)—When an earthquake strikes, damage to buildings such as nuclear power stations can worsen the catastrophe. Researchers from France's Institut Fresnel and the French division of Menard, a ground-improvement ...

Recommended for you

How Paramecium protozoa claw their way to the top

Sep 19, 2014

The ability to swim upwards – towards the sun and food supplies – is vital for many aquatic microorganisms. Exactly how they are able to differentiate between above and below in often murky waters is ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

vacuum-mechanics
1.4 / 5 (7) Apr 12, 2013
The ability to capture and release electromagnetic waves without disturbing their properties holds promise for the creation of new types of devices such as those that utilize light for information storage, or sensors that can hold information until needed. It might also lead to new developments in quantum optics, which could of course help researchers looking to build the ever elusive quantum computer.

This seems to be a good sign for researching in technology involved the physics of electromagnetic wave, anyway it seems that very few was done so far about researching in theoretical ream (such as what is the electromagnetic wave, how it was create and propagate?) something like the one given below.
http://www.vacuum...21〈=en