The many faces of the bacterial defense system

Apr 30, 2013
Streptococcus pyogenes, shown here while entering a cell, is one of the germs whose CRISPR-Cas system the scientists from Braunschweig have studied. Credit: © HZI / Rohde

Even bacteria have a kind of "immune system" they use to defend themselves against unwanted intruders – in their case, viruses. Scientists at the Helmholtz Center for Infection Research (HZI) in Braunschweig, Germany, were now able to show that this defense system is much more diverse than previously thought and that it comes in multiple versions. Their goal is to use the various newly discovered versions of the CRISPR-Cas gene for the targeted manipulation of genetic information, particularly for medical purposes.

The 's main function is to protect us against invading bacteria, viruses, and other pathogens. To perform its job, the system has evolved into a highly complex ensemble of cells, messengers, and that is capable of recognizing different pathogens, defending us against them, and storing information about them.

Even the bacteria themselves are threatened by pathogens: Certain viruses, the bacteriophages (literally, "bacteria eaters"), have become specialized to invade and proliferate inside of them. In order to get rid of these unwanted guests, many make use of an arsenal of molecules that works according to similar principles as an immune system does.

The Cas enzyme recognizes that contain non-self genetic information, e.g. from , and cleaves them at specific sites. In order to recognize these molecules, a molecular copy of specific, characteristic sections of the foreign DNA is required. This copy, a kind of "" of bacteriophage DNA and other foreign , exists as RNA, an important cellular building block, which is used, among other things, as a temporary storage site of .

The template for this profile is stored in the bacterium's own genes, specifically in those regions scientists call CRISPR (which stands for "clustered regularly interspaced small palindromic repeats" or, more simply put, the "regular arrangement of small, symmetric repeats" in the sequence of the DNA building blocks). Together, the enzyme and the profile RNA constitute the CRISPR-Cas system.

Now, Prof. Emmanuelle Charpentier's work group has scoured the genome of several hundred bacterial species in the search of CRISPR-Cas genes – and has made several discoveries. "We were able to identify new CRISPR-Cas genes in a number of bacterial species," says Charpentier, an HZI researcher who also teaches at Hannover Medical School (MHH). Among these species are much-feared germs like Streptococcus pyogenes and the meningitis pathogen, Neisseria meningitidis. "We have identified a number of these genes with the help of computers by examining known DNA sequences of the bacteria in question." Charpentier's conclusion: "The CRISPR system is not only widespread among bacteria, it also exists as an incredible range of different versions."

Knowing about these different versions is not only of academic interest but can also be tremendously useful for gene technology: "The CRISPR-Cas system is capable of cleaving DNA at very specific sites," explains Charpentier. "The Cas enzyme can already be modified in such a way that it becomes active not only in bacteria but also in animal and human cell cultures." If this kind of enzyme is specifically equipped with new RNA "profiles," it cleaves the cell's genome at precisely defined sites. "If you then use specific cellular repair mechanisms to mend the DNA strands and connect their loose ends, you can then specifically introduce new sections of genes into cellular DNA."

This opens considerable options for new forms of therapy. "I am certain that the CRISPR-Cas technology has tremendous potential," says Charpentier. "Especially for medical applications like gene therapy."

Explore further: How plant cell compartments change with cell growth

More information: Krzysztof Chylinski, Anaïs Le Rhun, Emmanuelle Charpentier, The tracrRNA and Cas9 families of type II CRISPR-Cas immunity systems, RNA Biology, 2013.

add to favorites email to friend print save as pdf

Related Stories

Researchers clarify bacterial resistance

Jun 24, 2011

Just like plants and animals, bacteria have a range of defence mechanisms against viruses and other threats. Dutch researchers at the Wageningen Laboratory for Microbiology and their American and Russian colleagues have largely ...

Researchers unlock the secret of bacteria's immune system

Nov 04, 2010

A team of Université Laval and Danisco researchers has just unlocked the secret of bacteria's immune system. The details of the discovery, which may eventually make it possible to prevent certain bacteria from developing ...

Scientists 'hijack' bacterial immune system

Jan 05, 2012

The knowledge that bacteria possess adaptable immune systems that protect them from individual viruses and other foreign invaders is relatively new to science, and researchers across the globe are working to learn how these ...

Bacterial security agents go rogue

Apr 14, 2013

CRISPR, a system of genes that bacteria use to defend themselves against viruses, has been found to be involved in helping some bacteria evade the mammalian immune system. The results are scheduled for publication Sunday, ...

Recommended for you

How plant cell compartments change with cell growth

8 hours ago

A research team led by Kiminori Toyooka from the RIKEN Center for Sustainable Resource Science has developed a sophisticated microscopy technique that for the first time captures the detailed movement of ...

Plants can 'switch off' virus DNA

8 hours ago

A team of virologists and plant geneticists at Wageningen UR has demonstrated that when tomato plants contain Ty-1 resistance to the important Tomato yellow leaf curl virus (TYLCV), parts of the virus DNA ...

A better understanding of cell to cell communication

9 hours ago

Researchers of the ISREC Institute at the School of Life Sciences, EPFL, have deciphered the mechanism whereby some microRNAs are retained in the cell while others are secreted and delivered to neighboring ...

A glimpse at the rings that make cell division possible

10 hours ago

Forming like a blown smoke ring does, a "contractile ring" similar to a tiny muscle pinches yeast cells in two. The division of cells makes life possible, but the actual mechanics of this fundamental process ...

User comments : 0